Stopping the Stream: A Pythonic Guide to Controlling OpenAI Responses

Hey there, Python devs!

Let’s explore a practical approach to giving users control over stopping those AI-generated responses?

The Scenario

Imagine you’re building a FastAPI application that uses OpenAI’s API. You’ve got streaming responses working smoothly, but there’s one thing missing: the ability for users to stop the stream mid-generation.

The Challenge

Stopping a stream isn’t as straightforward as you might think. OpenAI’s API keeps pumping out tokens, and you need a clean way to interrupt that flow without breaking your entire application.

The Solution

Here’s a killer implementation that’ll make your users happy:

import asyncio
from fastapi import FastAPI, WebSocket
from openai import AsyncOpenAI
from typing import Optional
class StreamController:
def __init__(self):
self.stop_generation = False
def request_stop(self):
self.stop_generation = True
class AIResponseGenerator:
def __init__(self, client: AsyncOpenAI):
self.client = client
self.stream_controller = StreamController()
async def generate_streaming_response(self, prompt: str):
# Reset the stop flag
self.stream_controller.stop_generation = False
try:
stream = await self.client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
stream=True
)
full_response = ""
for chunk in stream:
# Check if stop was requested
if self.stream_controller.stop_generation:
break
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response += content
yield content
except Exception as e:
print(f"Stream generation error: {e}")
def stop_stream(self):
# Trigger the stop mechanism
self.stream_controller.request_stop()
import asyncio
from fastapi import FastAPI, WebSocket
from openai import AsyncOpenAI
from typing import Optional

class StreamController:
    def __init__(self):
        self.stop_generation = False

    def request_stop(self):
        self.stop_generation = True

class AIResponseGenerator:
    def __init__(self, client: AsyncOpenAI):
        self.client = client
        self.stream_controller = StreamController()

    async def generate_streaming_response(self, prompt: str):
        # Reset the stop flag
        self.stream_controller.stop_generation = False

        try:
            stream = await self.client.chat.completions.create(
                model="gpt-3.5-turbo",
                messages=[{"role": "user", "content": prompt}],
                stream=True
            )

            full_response = ""
            for chunk in stream:
                # Check if stop was requested
                if self.stream_controller.stop_generation:
                    break

                if chunk.choices[0].delta.content:
                    content = chunk.choices[0].delta.content
                    full_response += content
                    yield content

        except Exception as e:
            print(f"Stream generation error: {e}")

    def stop_stream(self):
        # Trigger the stop mechanism
        self.stream_controller.request_stop()
import asyncio from fastapi import FastAPI, WebSocket from openai import AsyncOpenAI from typing import Optional class StreamController: def __init__(self): self.stop_generation = False def request_stop(self): self.stop_generation = True class AIResponseGenerator: def __init__(self, client: AsyncOpenAI): self.client = client self.stream_controller = StreamController() async def generate_streaming_response(self, prompt: str): # Reset the stop flag self.stream_controller.stop_generation = False try: stream = await self.client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], stream=True ) full_response = "" for chunk in stream: # Check if stop was requested if self.stream_controller.stop_generation: break if chunk.choices[0].delta.content: content = chunk.choices[0].delta.content full_response += content yield content except Exception as e: print(f"Stream generation error: {e}") def stop_stream(self): # Trigger the stop mechanism self.stream_controller.request_stop()

Enter fullscreen mode Exit fullscreen mode

Let’s unpack what’s happening here:

  1. StreamController: This is our traffic cop. It manages a simple boolean flag to control stream generation.

  2. AIResponseGenerator: The main class that handles AI response streaming.

    • Uses AsyncOpenAI for non-blocking API calls
    • Implements a generator that can be stopped mid-stream
    • Provides a stop_stream() method to interrupt generation

Pro Tips

  • Performance: This approach is memory-efficient and doesn’t block the event loop.
  • ️ Error Handling: Includes basic error catching to prevent unexpected crashes.
  • Flexibility: Easy to adapt to different streaming scenarios.

Potential Improvements

  • Add timeout mechanisms
  • Implement more granular error handling
  • Create a more sophisticated stop mechanism for complex streams

See u guys!

原文链接:Stopping the Stream: A Pythonic Guide to Controlling OpenAI Responses

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享
There's only one corner of the universe you can be sure of improving, and that's your own self.
这个宇宙中只有一个角落你肯定可以改进,那就是你自己
评论 抢沙发

请登录后发表评论

    暂无评论内容