Java 24: Unlocking Enhanced Performance and Modern Development Capabilities

Java 24 represents a significant milestone in the evolution of the Java platform, bringing together 24 carefully crafted JDK Enhancement Proposals (JEPs) that enhance performance, security, and developer productivity. Let’s explore the major features and their practical implications.

Performance Optimizations

Java 24 introduces two experimental features designed to boost application performance:

Generational Shenandoah Garbage Collector (JEP 404)

The Generational Shenandoah GC represents a significant evolution in Java’s garbage collection strategy, offering improved performance characteristics while maintaining compatibility with existing applications.
Technical Implementation:

<span>// Traditional Shenandoah GC configuration</span>
<span>-</span><span>XX:</span><span>+</span><span>UseShenandoahGC</span>
<span>// New Generational Shenandoah configuration</span>
<span>-</span><span>XX:</span><span>+</span><span>UseShenandoahGC</span> <span>-</span><span>XX:</span><span>+</span><span>ShenandoahGenerational</span>
<span>// Traditional Shenandoah GC configuration</span>
<span>-</span><span>XX:</span><span>+</span><span>UseShenandoahGC</span>
<span>// New Generational Shenandoah configuration</span>
<span>-</span><span>XX:</span><span>+</span><span>UseShenandoahGC</span> <span>-</span><span>XX:</span><span>+</span><span>ShenandoahGenerational</span>
// Traditional Shenandoah GC configuration -XX:+UseShenandoahGC // New Generational Shenandoah configuration -XX:+UseShenandoahGC -XX:+ShenandoahGenerational

Enter fullscreen mode Exit fullscreen mode

Generation-Based Collection

  • Objects are grouped by lifetime (young vs old)
  • Young objects are collected more frequently
  • Reduces pause times for young generation collections
  • Improves overall application responsiveness

Memory Management Efficiency

  • Better utilization of heap space
  • Reduced memory fragmentation
  • More predictable garbage collection patterns
  • Improved cache efficiency

Comparison with Previous Implementation:

Aspect Traditional Shenandoah Generational Shenandoah
Collection Strategy Single-generation approach Generation-based collection
Pause Times Variable, dependent on heap size More predictable, shorter for young generation
Memory Usage Single heap space Separated young/old generations
Collection Frequency Uniform across all objects Higher for young generation, lower for old
Compatibility Standalone mode Maintains compatibility with non generational mode

Compact Object Headers (JEP 450)

The Compact Object Headers feature represents a fundamental change in how Java objects are structured in memory, inspired by Project Lilliput’s goals of reducing memory overhead.

Technical Implementation:

<span>// Enable compact headers (experimental)</span>
<span>-</span><span>XX:</span><span>+</span><span>UseCompactObjectHeaders</span>
<span>// Example object structure comparison</span>
<span>class</span> <span>TraditionalObject</span> <span>{</span>
<span>// 96-128 bits header</span>
<span>// Mark word (64 bits)</span>
<span>// Class pointer (32-64 bits)</span>
<span>// Array length (for arrays)</span>
<span>// Hash code (32 bits)</span>
<span>// GC age (4 bits)</span>
<span>// Other metadata</span>
<span>}</span>
<span>class</span> <span>CompactObject</span> <span>{</span>
<span>// 64 bits header</span>
<span>// Mark word (32 bits)</span>
<span>// Class pointer (32 bits)</span>
<span>// Optional fields stored separately</span>
<span>}</span>
<span>// Enable compact headers (experimental)</span>
<span>-</span><span>XX:</span><span>+</span><span>UseCompactObjectHeaders</span>
<span>// Example object structure comparison</span>
<span>class</span> <span>TraditionalObject</span> <span>{</span>
    <span>// 96-128 bits header</span>
    <span>// Mark word (64 bits)</span>
    <span>// Class pointer (32-64 bits)</span>
    <span>// Array length (for arrays)</span>
    <span>// Hash code (32 bits)</span>
    <span>// GC age (4 bits)</span>
    <span>// Other metadata</span>
<span>}</span>
<span>class</span> <span>CompactObject</span> <span>{</span>
    <span>// 64 bits header</span>
    <span>// Mark word (32 bits)</span>
    <span>// Class pointer (32 bits)</span>
    <span>// Optional fields stored separately</span>
<span>}</span>
// Enable compact headers (experimental) -XX:+UseCompactObjectHeaders // Example object structure comparison class TraditionalObject { // 96-128 bits header // Mark word (64 bits) // Class pointer (32-64 bits) // Array length (for arrays) // Hash code (32 bits) // GC age (4 bits) // Other metadata } class CompactObject { // 64 bits header // Mark word (32 bits) // Class pointer (32 bits) // Optional fields stored separately }

Enter fullscreen mode Exit fullscreen mode

Memory Efficiency

  • Reduces object header size by 33-50%
  • Significant memory savings in object-heavy applications
  • Particularly beneficial for microservices and cloud deployments
  • Enables more objects to fit in CPU cache lines

Performance Benefits

  • Improved cache utilization
  • Reduced memory bandwidth usage
  • Faster object allocation and garbage collection
  • Better scaling in multi-threaded applications

Comparison with Previous Implementation:

Aspect Traditional Headers Compact Headers
Header Size 96-128 bits 64 bits
Metadata Storage All in header Optional fields stored separately
Cache Efficiency Lower due to larger size Higher due to smaller size
Memory Overhead Higher per object Lower per object
Status Production ready Experimental

Security Enhancements

Java 24 strengthens security with quantum-resistant cryptography:

<span>// Example of Key Derivation Function API (JEP 478)</span>
<span>KeyDerivation</span> <span>keyDerivation</span> <span>=</span> <span>KeyDerivation</span><span>.</span><span>getInstance</span><span>(</span><span>"PBKDF2WithHmacSHA256"</span><span>);</span>
<span>KeySpec</span> <span>keySpec</span> <span>=</span> <span>keyDerivation</span><span>.</span><span>deriveKey</span><span>(</span>
<span>new</span> <span>PBEParameterSpec</span><span>(</span><span>salt</span><span>,</span> <span>iterationCount</span><span>),</span>
<span>KeyType</span><span>.</span><span>AES</span>
<span>);</span>
<span>// Example of Key Derivation Function API (JEP 478)</span>
<span>KeyDerivation</span> <span>keyDerivation</span> <span>=</span> <span>KeyDerivation</span><span>.</span><span>getInstance</span><span>(</span><span>"PBKDF2WithHmacSHA256"</span><span>);</span>
<span>KeySpec</span> <span>keySpec</span> <span>=</span> <span>keyDerivation</span><span>.</span><span>deriveKey</span><span>(</span>
    <span>new</span> <span>PBEParameterSpec</span><span>(</span><span>salt</span><span>,</span> <span>iterationCount</span><span>),</span>
    <span>KeyType</span><span>.</span><span>AES</span>
<span>);</span>
// Example of Key Derivation Function API (JEP 478) KeyDerivation keyDerivation = KeyDerivation.getInstance("PBKDF2WithHmacSHA256"); KeySpec keySpec = keyDerivation.deriveKey( new PBEParameterSpec(salt, iterationCount), KeyType.AES );

Enter fullscreen mode Exit fullscreen mode

This release implements three significant security features:

  • Key Derivation Function API
  • Quantum-Resistant Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM)
  • Quantum-Resistant Module-Lattice-Based Digital Signature Algorithm (ML-DSA)

Developer Experience Improvements

The release significantly enhances developer productivity with simpler syntax:

<span>// Traditional Hello World</span>
<span>public</span> <span>class</span> <span>HelloWorld</span> <span>{</span>
<span>public</span> <span>static</span> <span>void</span> <span>main</span><span>(</span><span>String</span><span>[]</span> <span>args</span><span>)</span> <span>{</span>
<span>System</span><span>.</span><span>out</span><span>.</span><span>println</span><span>(</span><span>"Hello World!"</span><span>);</span>
<span>}</span>
<span>}</span>
<span>// New Simplified Version (JEP 495)</span>
<span>void</span> <span>main</span><span>()</span> <span>{</span>
<span>println</span><span>(</span><span>"Hello World!"</span><span>);</span>
<span>}</span>
<span>// Traditional Hello World</span>
<span>public</span> <span>class</span> <span>HelloWorld</span> <span>{</span>
    <span>public</span> <span>static</span> <span>void</span> <span>main</span><span>(</span><span>String</span><span>[]</span> <span>args</span><span>)</span> <span>{</span>
        <span>System</span><span>.</span><span>out</span><span>.</span><span>println</span><span>(</span><span>"Hello World!"</span><span>);</span>
    <span>}</span>
<span>}</span>
<span>// New Simplified Version (JEP 495)</span>
<span>void</span> <span>main</span><span>()</span> <span>{</span>
    <span>println</span><span>(</span><span>"Hello World!"</span><span>);</span>
<span>}</span>
// Traditional Hello World public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World!"); } } // New Simplified Version (JEP 495) void main() { println("Hello World!"); }

Enter fullscreen mode Exit fullscreen mode

Key improvements include:

  • Simple source files and instance main methods
  • Reduced complexity for beginners (only 1 principle vs 32 previously)
  • Introduction of Learn.java, a dedicated educational resource

Modernization Features

Several important modernization efforts are part of this release:
Stream Gatherers (JEP 485)

<span>List</span><span><</span><span>Employee</span><span>></span> <span>employees</span> <span>=</span> <span>List</span><span>.</span><span>of</span><span>(</span>
<span>new</span> <span>Employee</span><span>(</span><span>"John"</span><span>,</span> <span>30000</span><span>,</span> <span>"Engineering"</span><span>),</span>
<span>new</span> <span>Employee</span><span>(</span><span>"Jane"</span><span>,</span> <span>35000</span><span>,</span> <span>"Marketing"</span><span>),</span>
<span>new</span> <span>Employee</span><span>(</span><span>"Bob"</span><span>,</span> <span>28000</span><span>,</span> <span>"Engineering"</span><span>)</span>
<span>);</span>
<span>try</span> <span>(</span><span>var</span> <span>gatherer</span> <span>=</span> <span>Stream</span><span>.</span><span>gatherer</span><span>(</span>
<span>// Collect engineers</span>
<span>Collectors</span><span>.</span><span>filtering</span><span>(</span><span>e</span> <span>-></span>
<span>e</span><span>.</span><span>getDepartment</span><span>().</span><span>equals</span><span>(</span><span>"Engineering"</span><span>),</span> <span>Collectors</span><span>.</span><span>toList</span><span>()),</span>
<span>// Group by department</span>
<span>Collectors</span><span>.</span><span>groupingBy</span><span>(</span><span>Employee:</span><span>:</span><span>getDepartment</span><span>),</span>
<span>// Calculate total salary</span>
<span>Collectors</span><span>.</span><span>summingInt</span><span>(</span><span>Employee:</span><span>:</span><span>getSalary</span><span>)</span>
<span>))</span> <span>{</span>
<span>var</span> <span>result</span> <span>=</span> <span>employees</span><span>.</span><span>stream</span><span>().</span><span>collect</span><span>(</span><span>gatherer</span><span>);</span>
<span>List</span><span><</span><span>Employee</span><span>></span> <span>engineers</span> <span>=</span> <span>result</span><span>.</span><span>get</span><span>(</span><span>0</span><span>);</span>
<span>Map</span><span><</span><span>String</span><span>,</span> <span>List</span><span><</span><span>Employee</span><span>>></span> <span>byDepartment</span> <span>=</span> <span>result</span><span>.</span><span>get</span><span>(</span><span>1</span><span>);</span>
<span>int</span> <span>totalSalary</span> <span>=</span> <span>result</span><span>.</span><span>get</span><span>(</span><span>2</span><span>);</span>
<span>}</span>
<span>List</span><span><</span><span>Employee</span><span>></span> <span>employees</span> <span>=</span> <span>List</span><span>.</span><span>of</span><span>(</span>
    <span>new</span> <span>Employee</span><span>(</span><span>"John"</span><span>,</span> <span>30000</span><span>,</span> <span>"Engineering"</span><span>),</span>
    <span>new</span> <span>Employee</span><span>(</span><span>"Jane"</span><span>,</span> <span>35000</span><span>,</span> <span>"Marketing"</span><span>),</span>
    <span>new</span> <span>Employee</span><span>(</span><span>"Bob"</span><span>,</span> <span>28000</span><span>,</span> <span>"Engineering"</span><span>)</span>
<span>);</span>
<span>try</span> <span>(</span><span>var</span> <span>gatherer</span> <span>=</span> <span>Stream</span><span>.</span><span>gatherer</span><span>(</span>
    <span>// Collect engineers</span>
    <span>Collectors</span><span>.</span><span>filtering</span><span>(</span><span>e</span> <span>-></span> 
    <span>e</span><span>.</span><span>getDepartment</span><span>().</span><span>equals</span><span>(</span><span>"Engineering"</span><span>),</span> <span>Collectors</span><span>.</span><span>toList</span><span>()),</span>
    <span>// Group by department</span>
    <span>Collectors</span><span>.</span><span>groupingBy</span><span>(</span><span>Employee:</span><span>:</span><span>getDepartment</span><span>),</span>
    <span>// Calculate total salary</span>
    <span>Collectors</span><span>.</span><span>summingInt</span><span>(</span><span>Employee:</span><span>:</span><span>getSalary</span><span>)</span>
<span>))</span> <span>{</span>
    <span>var</span> <span>result</span> <span>=</span> <span>employees</span><span>.</span><span>stream</span><span>().</span><span>collect</span><span>(</span><span>gatherer</span><span>);</span>
    <span>List</span><span><</span><span>Employee</span><span>></span> <span>engineers</span> <span>=</span> <span>result</span><span>.</span><span>get</span><span>(</span><span>0</span><span>);</span>
    <span>Map</span><span><</span><span>String</span><span>,</span> <span>List</span><span><</span><span>Employee</span><span>>></span> <span>byDepartment</span> <span>=</span> <span>result</span><span>.</span><span>get</span><span>(</span><span>1</span><span>);</span>
    <span>int</span> <span>totalSalary</span> <span>=</span> <span>result</span><span>.</span><span>get</span><span>(</span><span>2</span><span>);</span>
<span>}</span>
List<Employee> employees = List.of( new Employee("John", 30000, "Engineering"), new Employee("Jane", 35000, "Marketing"), new Employee("Bob", 28000, "Engineering") ); try (var gatherer = Stream.gatherer( // Collect engineers Collectors.filtering(e -> e.getDepartment().equals("Engineering"), Collectors.toList()), // Group by department Collectors.groupingBy(Employee::getDepartment), // Calculate total salary Collectors.summingInt(Employee::getSalary) )) { var result = employees.stream().collect(gatherer); List<Employee> engineers = result.get(0); Map<String, List<Employee>> byDepartment = result.get(1); int totalSalary = result.get(2); }

Enter fullscreen mode Exit fullscreen mode

This example demonstrates how Stream Gatherers allow multiple collection operations in a single pass through the data, improving efficiency and reducing boilerplate code.
Ahead-of-Time Class Loading & Linking (JEP 483)

<span>// Traditional loading</span>
<span>public</span> <span>class</span> <span>Application</span> <span>{</span>
<span>public</span> <span>static</span> <span>void</span> <span>main</span><span>(</span><span>String</span><span>[]</span> <span>args</span><span>)</span> <span>{</span>
<span>// Classes are loaded and linked during runtime</span>
<span>Database</span> <span>db</span> <span>=</span> <span>new</span> <span>Database</span><span>();</span>
<span>Cache</span> <span>cache</span> <span>=</span> <span>new</span> <span>Cache</span><span>();</span>
<span>}</span>
<span>}</span>
<span>// Modern approach with AOT loading</span>
<span>public</span> <span>class</span> <span>Application</span> <span>{</span>
<span>static</span> <span>{</span>
<span>System</span><span>.</span><span>loadPredefinedClass</span><span>(</span><span>Database</span><span>.</span><span>class</span><span>);</span>
<span>System</span><span>.</span><span>loadPredefinedClass</span><span>(</span><span>Cache</span><span>.</span><span>class</span><span>);</span>
<span>}</span>
<span>public</span> <span>static</span> <span>void</span> <span>main</span><span>(</span><span>String</span><span>[]</span> <span>args</span><span>)</span> <span>{</span>
<span>// Instant startup for predefined classes</span>
<span>Database</span> <span>db</span> <span>=</span> <span>new</span> <span>Database</span><span>();</span>
<span>Cache</span> <span>cache</span> <span>=</span> <span>new</span> <span>Cache</span><span>();</span>
<span>}</span>
<span>}</span>
<span>// Traditional loading</span>
<span>public</span> <span>class</span> <span>Application</span> <span>{</span>
    <span>public</span> <span>static</span> <span>void</span> <span>main</span><span>(</span><span>String</span><span>[]</span> <span>args</span><span>)</span> <span>{</span>
        <span>// Classes are loaded and linked during runtime</span>
        <span>Database</span> <span>db</span> <span>=</span> <span>new</span> <span>Database</span><span>();</span>
        <span>Cache</span> <span>cache</span> <span>=</span> <span>new</span> <span>Cache</span><span>();</span>
    <span>}</span>
<span>}</span>
<span>// Modern approach with AOT loading</span>
<span>public</span> <span>class</span> <span>Application</span> <span>{</span>
    <span>static</span> <span>{</span>
        <span>System</span><span>.</span><span>loadPredefinedClass</span><span>(</span><span>Database</span><span>.</span><span>class</span><span>);</span>
        <span>System</span><span>.</span><span>loadPredefinedClass</span><span>(</span><span>Cache</span><span>.</span><span>class</span><span>);</span>
    <span>}</span>
    <span>public</span> <span>static</span> <span>void</span> <span>main</span><span>(</span><span>String</span><span>[]</span> <span>args</span><span>)</span> <span>{</span>
        <span>// Instant startup for predefined classes</span>
        <span>Database</span> <span>db</span> <span>=</span> <span>new</span> <span>Database</span><span>();</span>
        <span>Cache</span> <span>cache</span> <span>=</span> <span>new</span> <span>Cache</span><span>();</span>
    <span>}</span>
<span>}</span>
// Traditional loading public class Application { public static void main(String[] args) { // Classes are loaded and linked during runtime Database db = new Database(); Cache cache = new Cache(); } } // Modern approach with AOT loading public class Application { static { System.loadPredefinedClass(Database.class); System.loadPredefinedClass(Cache.class); } public static void main(String[] args) { // Instant startup for predefined classes Database db = new Database(); Cache cache = new Cache(); } }

Enter fullscreen mode Exit fullscreen mode

This feature works by monitoring application usage patterns during development and storing optimized class representations for future runs.
Vector API (JEP 489)

<span>// Traditional array processing</span>
<span>double</span><span>[]</span> <span>prices</span> <span>=</span> <span>{</span><span>100.0</span><span>,</span> <span>200.0</span><span>,</span> <span>300.0</span><span>,</span> <span>400.0</span><span>};</span>
<span>double</span> <span>discountFactor</span> <span>=</span> <span>0.9</span><span>;</span>
<span>double</span><span>[]</span> <span>discountedPrices</span> <span>=</span> <span>new</span> <span>double</span><span>[</span><span>prices</span><span>.</span><span>length</span><span>];</span>
<span>for</span> <span>(</span><span>int</span> <span>i</span> <span>=</span> <span>0</span><span>;</span> <span>i</span> <span><</span> <span>prices</span><span>.</span><span>length</span><span>;</span> <span>i</span><span>++)</span> <span>{</span>
<span>discountedPrices</span><span>[</span><span>i</span><span>]</span> <span>=</span> <span>prices</span><span>[</span><span>i</span><span>]</span> <span>*</span> <span>discountFactor</span><span>;</span>
<span>}</span>
<span>// Vector API approach</span>
<span>try</span> <span>(</span><span>var</span> <span>vector</span> <span>=</span> <span>DoubleVector</span><span>.</span><span>fromArray</span><span>(</span><span>prices</span><span>,</span> <span>0</span><span>))</span> <span>{</span>
<span>var</span> <span>discounted</span> <span>=</span> <span>vector</span><span>.</span><span>mul</span><span>(</span><span>discountFactor</span><span>);</span>
<span>discounted</span><span>.</span><span>intoArray</span><span>(</span><span>prices</span><span>,</span> <span>0</span><span>);</span>
<span>}</span>
<span>// Traditional array processing</span>
<span>double</span><span>[]</span> <span>prices</span> <span>=</span> <span>{</span><span>100.0</span><span>,</span> <span>200.0</span><span>,</span> <span>300.0</span><span>,</span> <span>400.0</span><span>};</span>
<span>double</span> <span>discountFactor</span> <span>=</span> <span>0.9</span><span>;</span>
<span>double</span><span>[]</span> <span>discountedPrices</span> <span>=</span> <span>new</span> <span>double</span><span>[</span><span>prices</span><span>.</span><span>length</span><span>];</span>
<span>for</span> <span>(</span><span>int</span> <span>i</span> <span>=</span> <span>0</span><span>;</span> <span>i</span> <span><</span> <span>prices</span><span>.</span><span>length</span><span>;</span> <span>i</span><span>++)</span> <span>{</span>
    <span>discountedPrices</span><span>[</span><span>i</span><span>]</span> <span>=</span> <span>prices</span><span>[</span><span>i</span><span>]</span> <span>*</span> <span>discountFactor</span><span>;</span>
<span>}</span>
<span>// Vector API approach</span>
<span>try</span> <span>(</span><span>var</span> <span>vector</span> <span>=</span> <span>DoubleVector</span><span>.</span><span>fromArray</span><span>(</span><span>prices</span><span>,</span> <span>0</span><span>))</span> <span>{</span>
    <span>var</span> <span>discounted</span> <span>=</span> <span>vector</span><span>.</span><span>mul</span><span>(</span><span>discountFactor</span><span>);</span>
    <span>discounted</span><span>.</span><span>intoArray</span><span>(</span><span>prices</span><span>,</span> <span>0</span><span>);</span>
<span>}</span>
// Traditional array processing double[] prices = {100.0, 200.0, 300.0, 400.0}; double discountFactor = 0.9; double[] discountedPrices = new double[prices.length]; for (int i = 0; i < prices.length; i++) { discountedPrices[i] = prices[i] * discountFactor; } // Vector API approach try (var vector = DoubleVector.fromArray(prices, 0)) { var discounted = vector.mul(discountFactor); discounted.intoArray(prices, 0); }

Enter fullscreen mode Exit fullscreen mode

The Vector API automatically leverages CPU-specific optimizations, ensuring optimal performance across different architectures without requiring manual optimization efforts.

Practical Benefits

These modernization features offer several advantages:

Performance Improvements

  • Stream Gatherers reduce memory allocation and copying AOT loading eliminates startup overhead Vector API leverages hardware-level parallelism

Code Simplification

  • Single-pass operations reduce boilerplate
  • More declarative programming style
  • Better alignment with functional programming principles

Development Efficiency

  • Faster prototyping with instant startup
  • Easier parallelization of computations
  • Reduced chance of manual optimization errors

原文链接:Java 24: Unlocking Enhanced Performance and Modern Development Capabilities

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享
People are not just to love and live.
人不是仅仅为了爱而生存的
评论 抢沙发

请登录后发表评论

    暂无评论内容