Building a High-Performance Web Scraper with Python

Introduction

This article explores the architecture and implementation of a high-performance web scraper built to extract product data from e-commerce platforms. The scraper uses multiple Python libraries and techniques to efficiently process thousands of products while maintaining resilience against common scraping challenges.

Technical Architecture

The scraper is built on a fully asynchronous foundation using Python’s asyncio ecosystem, with these key components:

  • Network Layer: aiohttp for async HTTP requests with connection pooling
  • DOM Processing: BeautifulSoup4 for HTML parsing
  • Dynamic Content: Playwright for JavaScript-rendered content extraction
  • Data Processing: pandas for data manipulation and export

Implementation Highlights

Concurrency Management

The scraper implements a worker pool pattern with configurable concurrency limits:

<span># Concurrency settings </span><span>self</span><span>.</span><span>max_workers</span> <span>=</span> <span>int</span><span>(</span><span>os</span><span>.</span><span>getenv</span><span>(</span><span>'</span><span>MAX_WORKERS</span><span>'</span><span>))</span>
<span>self</span><span>.</span><span>max_connections</span> <span>=</span> <span>int</span><span>(</span><span>os</span><span>.</span><span>getenv</span><span>(</span><span>'</span><span>MAX_CONNECTIONS</span><span>'</span><span>))</span>
<span># TCP connection pooling </span><span>connector</span> <span>=</span> <span>aiohttp</span><span>.</span><span>TCPConnector</span><span>(</span>
<span>limit</span><span>=</span><span>self</span><span>.</span><span>max_connections</span><span>,</span>
<span>resolver</span><span>=</span><span>resolver</span> <span># Custom DNS resolver </span><span>)</span>
<span># Concurrency settings </span><span>self</span><span>.</span><span>max_workers</span> <span>=</span> <span>int</span><span>(</span><span>os</span><span>.</span><span>getenv</span><span>(</span><span>'</span><span>MAX_WORKERS</span><span>'</span><span>))</span>
<span>self</span><span>.</span><span>max_connections</span> <span>=</span> <span>int</span><span>(</span><span>os</span><span>.</span><span>getenv</span><span>(</span><span>'</span><span>MAX_CONNECTIONS</span><span>'</span><span>))</span>

<span># TCP connection pooling </span><span>connector</span> <span>=</span> <span>aiohttp</span><span>.</span><span>TCPConnector</span><span>(</span>
    <span>limit</span><span>=</span><span>self</span><span>.</span><span>max_connections</span><span>,</span>
    <span>resolver</span><span>=</span><span>resolver</span>  <span># Custom DNS resolver </span><span>)</span>
# Concurrency settings self.max_workers = int(os.getenv('MAX_WORKERS')) self.max_connections = int(os.getenv('MAX_CONNECTIONS')) # TCP connection pooling connector = aiohttp.TCPConnector( limit=self.max_connections, resolver=resolver # Custom DNS resolver )

Enter fullscreen mode Exit fullscreen mode

This prevents overwhelming the target server while maximizing throughput.

Resilient Network Requests

The network layer implements sophisticated retry logic with exponential backoff:

<span>async</span> <span>def</span> <span>fetch_url</span><span>(</span><span>self</span><span>,</span> <span>session</span><span>,</span> <span>url</span><span>):</span>
<span>retries</span> <span>=</span> <span>0</span>
<span>while</span> <span>retries</span> <span><</span> <span>self</span><span>.</span><span>max_retries</span><span>:</span>
<span>try</span><span>:</span>
<span>headers</span> <span>=</span> <span>{</span>
<span>'</span><span>User-Agent</span><span>'</span><span>:</span> <span>self</span><span>.</span><span>user_agent</span><span>.</span><span>random</span><span>,</span>
<span># Additional headers omitted for brevity </span> <span>}</span>
<span>async</span> <span>with</span> <span>session</span><span>.</span><span>get</span><span>(</span><span>url</span><span>,</span> <span>headers</span><span>=</span><span>headers</span><span>,</span> <span>timeout</span><span>=</span><span>self</span><span>.</span><span>request_timeout</span><span>)</span> <span>as</span> <span>response</span><span>:</span>
<span>if</span> <span>response</span><span>.</span><span>status</span> <span>==</span> <span>200</span><span>:</span>
<span>return</span> <span>await</span> <span>response</span><span>.</span><span>read</span><span>()</span>
<span>elif</span> <span>response</span><span>.</span><span>status</span> <span>==</span> <span>429</span><span>:</span>
<span># Rate limit handling </span> <span>retry_after</span> <span>=</span> <span>int</span><span>(</span><span>response</span><span>.</span><span>headers</span><span>.</span><span>get</span><span>(</span><span>'</span><span>Retry-After</span><span>'</span><span>,</span>
<span>self</span><span>.</span><span>retry_backoff</span> <span>**</span> <span>(</span><span>retries</span> <span>+</span> <span>2</span><span>)))</span>
<span>await</span> <span>asyncio</span><span>.</span><span>sleep</span><span>(</span><span>retry_after</span><span>)</span>
<span># Retry with exponential backoff </span> <span>retries</span> <span>+=</span> <span>1</span>
<span>wait_time</span> <span>=</span> <span>self</span><span>.</span><span>retry_backoff</span> <span>**</span> <span>(</span><span>retries</span> <span>+</span> <span>1</span><span>)</span>
<span>await</span> <span>asyncio</span><span>.</span><span>sleep</span><span>(</span><span>wait_time</span><span>)</span>
<span>except </span><span>(</span><span>asyncio</span><span>.</span><span>TimeoutError</span><span>,</span> <span>aiohttp</span><span>.</span><span>ClientError</span><span>)</span> <span>as</span> <span>e</span><span>:</span>
<span>logger</span><span>.</span><span>warning</span><span>(</span><span>f</span><span>"</span><span>Network error: </span><span>{</span><span>e</span><span>}</span><span>"</span><span>)</span>
<span>retries</span> <span>+=</span> <span>1</span>
<span>async</span> <span>def</span> <span>fetch_url</span><span>(</span><span>self</span><span>,</span> <span>session</span><span>,</span> <span>url</span><span>):</span>
    <span>retries</span> <span>=</span> <span>0</span>
    <span>while</span> <span>retries</span> <span><</span> <span>self</span><span>.</span><span>max_retries</span><span>:</span>
        <span>try</span><span>:</span>
            <span>headers</span> <span>=</span> <span>{</span>
                <span>'</span><span>User-Agent</span><span>'</span><span>:</span> <span>self</span><span>.</span><span>user_agent</span><span>.</span><span>random</span><span>,</span>
                <span># Additional headers omitted for brevity </span>            <span>}</span>

            <span>async</span> <span>with</span> <span>session</span><span>.</span><span>get</span><span>(</span><span>url</span><span>,</span> <span>headers</span><span>=</span><span>headers</span><span>,</span> <span>timeout</span><span>=</span><span>self</span><span>.</span><span>request_timeout</span><span>)</span> <span>as</span> <span>response</span><span>:</span>
                <span>if</span> <span>response</span><span>.</span><span>status</span> <span>==</span> <span>200</span><span>:</span>
                    <span>return</span> <span>await</span> <span>response</span><span>.</span><span>read</span><span>()</span>
                <span>elif</span> <span>response</span><span>.</span><span>status</span> <span>==</span> <span>429</span><span>:</span>
                    <span># Rate limit handling </span>                    <span>retry_after</span> <span>=</span> <span>int</span><span>(</span><span>response</span><span>.</span><span>headers</span><span>.</span><span>get</span><span>(</span><span>'</span><span>Retry-After</span><span>'</span><span>,</span> 
                                    <span>self</span><span>.</span><span>retry_backoff</span> <span>**</span> <span>(</span><span>retries</span> <span>+</span> <span>2</span><span>)))</span>
                    <span>await</span> <span>asyncio</span><span>.</span><span>sleep</span><span>(</span><span>retry_after</span><span>)</span>

            <span># Retry with exponential backoff </span>            <span>retries</span> <span>+=</span> <span>1</span>
            <span>wait_time</span> <span>=</span> <span>self</span><span>.</span><span>retry_backoff</span> <span>**</span> <span>(</span><span>retries</span> <span>+</span> <span>1</span><span>)</span>
            <span>await</span> <span>asyncio</span><span>.</span><span>sleep</span><span>(</span><span>wait_time</span><span>)</span>

        <span>except </span><span>(</span><span>asyncio</span><span>.</span><span>TimeoutError</span><span>,</span> <span>aiohttp</span><span>.</span><span>ClientError</span><span>)</span> <span>as</span> <span>e</span><span>:</span>
            <span>logger</span><span>.</span><span>warning</span><span>(</span><span>f</span><span>"</span><span>Network error: </span><span>{</span><span>e</span><span>}</span><span>"</span><span>)</span>
            <span>retries</span> <span>+=</span> <span>1</span>
async def fetch_url(self, session, url): retries = 0 while retries < self.max_retries: try: headers = { 'User-Agent': self.user_agent.random, # Additional headers omitted for brevity } async with session.get(url, headers=headers, timeout=self.request_timeout) as response: if response.status == 200: return await response.read() elif response.status == 429: # Rate limit handling retry_after = int(response.headers.get('Retry-After', self.retry_backoff ** (retries + 2))) await asyncio.sleep(retry_after) # Retry with exponential backoff retries += 1 wait_time = self.retry_backoff ** (retries + 1) await asyncio.sleep(wait_time) except (asyncio.TimeoutError, aiohttp.ClientError) as e: logger.warning(f"Network error: {e}") retries += 1

Enter fullscreen mode Exit fullscreen mode

Hybrid Content Extraction

The scraper employs a two-phase extraction approach:

  1. Static HTML Parsing: Uses BeautifulSoup to extract readily available content
  2. Dynamic Content Extraction: Uses Playwright to handle JavaScript-rendered elements
<span>async</span> <span>def</span> <span>fetch_product</span><span>(</span><span>self</span><span>,</span> <span>session</span><span>,</span> <span>url</span><span>,</span> <span>page</span><span>):</span>
<span># Static content extraction </span> <span>with</span> <span>concurrent</span><span>.</span><span>futures</span><span>.</span><span>ThreadPoolExecutor</span><span>()</span> <span>as</span> <span>executor</span><span>:</span>
<span>loop</span> <span>=</span> <span>asyncio</span><span>.</span><span>get_event_loop</span><span>()</span>
<span>product</span> <span>=</span> <span>await</span> <span>loop</span><span>.</span><span>run_in_executor</span><span>(</span>
<span>executor</span><span>,</span>
<span>partial</span><span>(</span><span>self</span><span>.</span><span>scrape_product_html</span><span>,</span> <span>content</span><span>,</span> <span>url</span><span>)</span>
<span>)</span>
<span># Dynamic content extraction </span> <span>image_url</span><span>,</span> <span>description</span> <span>=</span> <span>await</span> <span>self</span><span>.</span><span>scrape_dynamic_content_playwright</span><span>(</span><span>page</span><span>,</span> <span>url</span><span>)</span>
<span>product</span><span>.</span><span>image_url</span> <span>=</span> <span>image_url</span>
<span>product</span><span>.</span><span>description</span> <span>=</span> <span>description</span>
<span>async</span> <span>def</span> <span>fetch_product</span><span>(</span><span>self</span><span>,</span> <span>session</span><span>,</span> <span>url</span><span>,</span> <span>page</span><span>):</span>
    <span># Static content extraction </span>    <span>with</span> <span>concurrent</span><span>.</span><span>futures</span><span>.</span><span>ThreadPoolExecutor</span><span>()</span> <span>as</span> <span>executor</span><span>:</span>
        <span>loop</span> <span>=</span> <span>asyncio</span><span>.</span><span>get_event_loop</span><span>()</span>
        <span>product</span> <span>=</span> <span>await</span> <span>loop</span><span>.</span><span>run_in_executor</span><span>(</span>
            <span>executor</span><span>,</span> 
            <span>partial</span><span>(</span><span>self</span><span>.</span><span>scrape_product_html</span><span>,</span> <span>content</span><span>,</span> <span>url</span><span>)</span>
        <span>)</span>

    <span># Dynamic content extraction </span>    <span>image_url</span><span>,</span> <span>description</span> <span>=</span> <span>await</span> <span>self</span><span>.</span><span>scrape_dynamic_content_playwright</span><span>(</span><span>page</span><span>,</span> <span>url</span><span>)</span>
    <span>product</span><span>.</span><span>image_url</span> <span>=</span> <span>image_url</span>
    <span>product</span><span>.</span><span>description</span> <span>=</span> <span>description</span>
async def fetch_product(self, session, url, page): # Static content extraction with concurrent.futures.ThreadPoolExecutor() as executor: loop = asyncio.get_event_loop() product = await loop.run_in_executor( executor, partial(self.scrape_product_html, content, url) ) # Dynamic content extraction image_url, description = await self.scrape_dynamic_content_playwright(page, url) product.image_url = image_url product.description = description

Enter fullscreen mode Exit fullscreen mode

This approach optimizes for both speed and completeness.

DNS Resilience

The scraper implements DNS fallbacks to handle potential DNS resolution issues:

<span>try</span><span>:</span>
<span>import</span> <span>aiodns</span>
<span>resolver</span> <span>=</span> <span>aiohttp</span><span>.</span><span>AsyncResolver</span><span>(</span><span>nameservers</span><span>=</span><span>[</span><span>"</span><span>8.8.8.8</span><span>"</span><span>,</span> <span>"</span><span>1.1.1.1</span><span>"</span><span>])</span>
<span>except</span> <span>ImportError</span><span>:</span>
<span>logger</span><span>.</span><span>warning</span><span>(</span><span>"</span><span>aiodns library not found. Falling back to default resolver.</span><span>"</span><span>)</span>
<span>resolver</span> <span>=</span> <span>None</span>
<span>try</span><span>:</span>
    <span>import</span> <span>aiodns</span>
    <span>resolver</span> <span>=</span> <span>aiohttp</span><span>.</span><span>AsyncResolver</span><span>(</span><span>nameservers</span><span>=</span><span>[</span><span>"</span><span>8.8.8.8</span><span>"</span><span>,</span> <span>"</span><span>1.1.1.1</span><span>"</span><span>])</span>
<span>except</span> <span>ImportError</span><span>:</span>
    <span>logger</span><span>.</span><span>warning</span><span>(</span><span>"</span><span>aiodns library not found. Falling back to default resolver.</span><span>"</span><span>)</span>
    <span>resolver</span> <span>=</span> <span>None</span>
try: import aiodns resolver = aiohttp.AsyncResolver(nameservers=["8.8.8.8", "1.1.1.1"]) except ImportError: logger.warning("aiodns library not found. Falling back to default resolver.") resolver = None

Enter fullscreen mode Exit fullscreen mode

Data Processing Pipeline

The scraper implements a thread-safe queue for handling scraped data:

<span># Thread-safe queue for results </span><span>self</span><span>.</span><span>results_queue</span> <span>=</span> <span>queue</span><span>.</span><span>Queue</span><span>()</span>
<span># Data processing </span><span>def</span> <span>save_results_from_queue</span><span>(</span><span>self</span><span>):</span>
<span>products</span> <span>=</span> <span>[]</span>
<span>while</span> <span>not</span> <span>self</span><span>.</span><span>results_queue</span><span>.</span><span>empty</span><span>():</span>
<span>try</span><span>:</span>
<span>products</span><span>.</span><span>append</span><span>(</span><span>self</span><span>.</span><span>results_queue</span><span>.</span><span>get_nowait</span><span>())</span>
<span>except</span> <span>queue</span><span>.</span><span>Empty</span><span>:</span>
<span>break</span>
<span>if</span> <span>products</span><span>:</span>
<span>df</span> <span>=</span> <span>pd</span><span>.</span><span>DataFrame</span><span>(</span><span>products</span><span>)</span>
<span># Save to CSV with proper encoding and escaping </span> <span>df</span><span>.</span><span>to_csv</span><span>(</span>
<span>filename</span><span>,</span>
<span>index</span><span>=</span><span>False</span><span>,</span>
<span>encoding</span><span>=</span><span>'</span><span>utf-8-sig</span><span>'</span><span>,</span>
<span>escapechar</span><span>=</span><span>'</span><span>\\</span><span>'</span><span>,</span>
<span>quoting</span><span>=</span><span>csv</span><span>.</span><span>QUOTE_ALL</span>
<span>)</span>
<span># Thread-safe queue for results </span><span>self</span><span>.</span><span>results_queue</span> <span>=</span> <span>queue</span><span>.</span><span>Queue</span><span>()</span>

<span># Data processing </span><span>def</span> <span>save_results_from_queue</span><span>(</span><span>self</span><span>):</span>
    <span>products</span> <span>=</span> <span>[]</span>
    <span>while</span> <span>not</span> <span>self</span><span>.</span><span>results_queue</span><span>.</span><span>empty</span><span>():</span>
        <span>try</span><span>:</span>
            <span>products</span><span>.</span><span>append</span><span>(</span><span>self</span><span>.</span><span>results_queue</span><span>.</span><span>get_nowait</span><span>())</span>
        <span>except</span> <span>queue</span><span>.</span><span>Empty</span><span>:</span>
            <span>break</span>

    <span>if</span> <span>products</span><span>:</span>
        <span>df</span> <span>=</span> <span>pd</span><span>.</span><span>DataFrame</span><span>(</span><span>products</span><span>)</span>
        <span># Save to CSV with proper encoding and escaping </span>        <span>df</span><span>.</span><span>to_csv</span><span>(</span>
            <span>filename</span><span>,</span>
            <span>index</span><span>=</span><span>False</span><span>,</span>
            <span>encoding</span><span>=</span><span>'</span><span>utf-8-sig</span><span>'</span><span>,</span>
            <span>escapechar</span><span>=</span><span>'</span><span>\\</span><span>'</span><span>,</span>
            <span>quoting</span><span>=</span><span>csv</span><span>.</span><span>QUOTE_ALL</span>
        <span>)</span>
# Thread-safe queue for results self.results_queue = queue.Queue() # Data processing def save_results_from_queue(self): products = [] while not self.results_queue.empty(): try: products.append(self.results_queue.get_nowait()) except queue.Empty: break if products: df = pd.DataFrame(products) # Save to CSV with proper encoding and escaping df.to_csv( filename, index=False, encoding='utf-8-sig', escapechar='\\', quoting=csv.QUOTE_ALL )

Enter fullscreen mode Exit fullscreen mode

Performance Optimizations

Several techniques are employed to maximize throughput:

  1. Batch Processing: Products are processed in configurable batches
  2. Random Delays: Randomized delays between requests prevent detection
  3. Connection Pooling: TCP connection reuse reduces overhead
  4. ThreadPoolExecutor: CPU-bound tasks are offloaded to prevent blocking the event loop
  5. Sampling: For large datasets, statistical sampling is used to estimate total counts

Error Handling and Reliability

The scraper implements comprehensive error handling:

<span>try</span><span>:</span>
<span># Scraping logic </span><span>except</span> <span>Exception</span> <span>as</span> <span>e</span><span>:</span>
<span>logger</span><span>.</span><span>error</span><span>(</span><span>f</span><span>"</span><span>Error in scrape_all_products: </span><span>{</span><span>e</span><span>}</span><span>"</span><span>)</span>
<span># Save any results in queue before exiting </span> <span>self</span><span>.</span><span>save_results_from_queue</span><span>()</span>
<span>raise</span>
<span>try</span><span>:</span>
    <span># Scraping logic </span><span>except</span> <span>Exception</span> <span>as</span> <span>e</span><span>:</span>
    <span>logger</span><span>.</span><span>error</span><span>(</span><span>f</span><span>"</span><span>Error in scrape_all_products: </span><span>{</span><span>e</span><span>}</span><span>"</span><span>)</span>
    <span># Save any results in queue before exiting </span>    <span>self</span><span>.</span><span>save_results_from_queue</span><span>()</span>
    <span>raise</span>
try: # Scraping logic except Exception as e: logger.error(f"Error in scrape_all_products: {e}") # Save any results in queue before exiting self.save_results_from_queue() raise

Enter fullscreen mode Exit fullscreen mode

This ensures that even if the scraper crashes, partial results are saved.

Conclusion

The architecture outlined here demonstrates how to build a high-performance web scraper that balances speed, reliability, and target server courtesy. By leveraging asynchronous programming, connection pooling, and hybrid content extraction techniques, the scraper can efficiently process thousands of products while maintaining resilience against common scraping challenges.

Key takeaways:

  • Asynchronous programming is essential for high-performance web scraping
  • Hybrid static/dynamic extraction maximizes data completeness
  • Proper error handling and resilience mechanisms are crucial for production use
  • Configurable parameters allow for fine-tuning based on target site characteristics

原文链接:Building a High-Performance Web Scraper with Python

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享
Every day is beautiful if you choose to see it.
如果你愿意去发现,其实每一天都很美
评论 抢沙发

请登录后发表评论

    暂无评论内容