Table of Contents
Introduction
In the world of AI, conversational models like DeepSeek-r1 by Ollama are revolutionizing natural language processing. This guide will walk you through the process of installing Ollama with DeepSeek-r1 on your Windows machine and integrating it with Python. Whether you’re building intelligent applications or exploring advanced AI, this tutorial will help you set up DeepSeek-r1 to enhance your projects with powerful conversational capabilities. Let’s get started!
What is DeepSeek r1
DeepSeek-r1 is an advanced AI model developed by Ollama, offering state-of-the-art solutions for natural language processing (NLP). With the power of deep reasoning and problem-solving capabilities, it’s perfect for applications such as content generation, chatbots, and AI-driven customer support systems.
Key Features of DeepSeek-r1:
- Optimized for NLP: DeepSeek-r1 is tailored for chat-based AI tasks, offering seamless natural language understanding.
- Faster Inference: Optimized for real-time responses, this model is perfect for chatbots and virtual assistants.
- Higher Accuracy: DeepSeek-r1 delivers refined performance in text generation, making it suitable for human-like conversational applications.
- Specialized AI Model: Unlike other AI tools, DeepSeek-r1 is designed specifically for language-related tasks.
Use Cases:
- Chatbots and Virtual Assistants
- Content Generation
- Question-Answer Systems
- Customer Support
Prerequisites
Follow these steps to install Ollama with DeepSeek-r1 on your Windows machine and get it running with Python.
Basic Setup
- Download Ollama: Visit the official Ollama website and download the software.
- Download DeepSeek-r1: Go to the Ollama website and download the DeepSeek-r1 model, ensuring it’s compatible with your system.
Command Line Setup
Open your command line interface (Command Prompt or PowerShell) and run the following command to pull the DeepSeek-r1 model:
ollama pull deepseek-r1 <span>--version</span>ollama pull deepseek-r1 <span>--version</span>ollama pull deepseek-r1 --version
Enter fullscreen mode Exit fullscreen mode
Verify Installation
Run the following command to confirm that the installation was successful:
ollama listollama listollama list
Enter fullscreen mode Exit fullscreen mode
If everything is set up correctly, the list of installed models, including DeepSeek-r1, will be displayed.
Test the Model
To test if DeepSeek-r1 is working as expected, run the following command:
ollama run deepseek-r1ollama run deepseek-r1ollama run deepseek-r1
Enter fullscreen mode Exit fullscreen mode
You can interact with the model by asking questions like “How are you?”. To exit, simply type ‘bye’ or press Ctrl+Z.
Python Integration Setup
Now let’s set up Python to interact with Ollama.
-
Create a directory for your project:
<span>cd</span>/<span>mkdir </span>testDeep<span>cd </span>testDeep<span>cd</span>/ <span>mkdir </span>testDeep <span>cd </span>testDeep
cd/ mkdir testDeep cd testDeep
-
Verify your Python version:
python <span>--version</span>python <span>--version</span>
python --version
-
Create a virtual environment:
python <span>-m</span> venv env1python <span>-m</span> venv env1
python -m venv env1
-
Activate the virtual environment:
env1<span>\S</span>cripts<span>\a</span>ctivate.batenv1<span>\S</span>cripts<span>\a</span>ctivate.bat
env1\Scripts\activate.bat
-
Install the Ollama package:
pip <span>install </span>ollamapip <span>install </span>ollama
pip install ollama
-
Optionally, open your preferred editor with:
code .//for VS code editorcode .//for VS code editor
code .//for VS code editor
Launching Python Editors from Command Prompt
To open Python editors directly from the command line:
- For IDLE: Type
idle
orpython -m idlelib
- For PyCharm: Type
pycharm
(if installed in your system’s PATH) - For Jupyter Notebook: Type
jupyter notebook
- For Spyder: Type
spyder
Python Implementation
Here’s a simple Python script to interact with DeepSeek-r1:
<span>import</span> <span>ollama</span><span># Initialize conversation with the model </span><span>response</span> <span>=</span> <span>ollama</span><span>.</span><span>chat</span><span>(</span><span>model</span><span>=</span><span>'</span><span>deepseek-r1</span><span>'</span><span>,</span><span>messages</span><span>=</span><span>[{</span><span>'</span><span>role</span><span>'</span><span>:</span> <span>'</span><span>user</span><span>'</span><span>,</span><span>'</span><span>content</span><span>'</span><span>:</span> <span>'</span><span>Hello, who are you?</span><span>'</span><span>}])</span><span># Print the response </span><span>print</span><span>(</span><span>response</span><span>[</span><span>'</span><span>message</span><span>'</span><span>][</span><span>'</span><span>content</span><span>'</span><span>])</span><span># Continue conversation </span><span>while</span> <span>True</span><span>:</span><span>user_input</span> <span>=</span> <span>input</span><span>(</span><span>"</span><span>You: </span><span>"</span><span>)</span><span>if</span> <span>user_input</span><span>.</span><span>lower</span><span>()</span> <span>==</span> <span>'</span><span>exit</span><span>'</span><span>:</span><span>break</span><span>response</span> <span>=</span> <span>ollama</span><span>.</span><span>chat</span><span>(</span><span>model</span><span>=</span><span>'</span><span>deepseek-r1</span><span>'</span><span>,</span><span>messages</span><span>=</span><span>[{</span><span>'</span><span>role</span><span>'</span><span>:</span> <span>'</span><span>user</span><span>'</span><span>,</span><span>'</span><span>content</span><span>'</span><span>:</span> <span>user_input</span><span>}])</span><span>print</span><span>(</span><span>"</span><span>Assistant:</span><span>"</span><span>,</span> <span>response</span><span>[</span><span>'</span><span>message</span><span>'</span><span>][</span><span>'</span><span>content</span><span>'</span><span>])</span><span>import</span> <span>ollama</span> <span># Initialize conversation with the model </span><span>response</span> <span>=</span> <span>ollama</span><span>.</span><span>chat</span><span>(</span><span>model</span><span>=</span><span>'</span><span>deepseek-r1</span><span>'</span><span>,</span> <span>messages</span><span>=</span><span>[{</span> <span>'</span><span>role</span><span>'</span><span>:</span> <span>'</span><span>user</span><span>'</span><span>,</span> <span>'</span><span>content</span><span>'</span><span>:</span> <span>'</span><span>Hello, who are you?</span><span>'</span> <span>}])</span> <span># Print the response </span><span>print</span><span>(</span><span>response</span><span>[</span><span>'</span><span>message</span><span>'</span><span>][</span><span>'</span><span>content</span><span>'</span><span>])</span> <span># Continue conversation </span><span>while</span> <span>True</span><span>:</span> <span>user_input</span> <span>=</span> <span>input</span><span>(</span><span>"</span><span>You: </span><span>"</span><span>)</span> <span>if</span> <span>user_input</span><span>.</span><span>lower</span><span>()</span> <span>==</span> <span>'</span><span>exit</span><span>'</span><span>:</span> <span>break</span> <span>response</span> <span>=</span> <span>ollama</span><span>.</span><span>chat</span><span>(</span><span>model</span><span>=</span><span>'</span><span>deepseek-r1</span><span>'</span><span>,</span> <span>messages</span><span>=</span><span>[{</span> <span>'</span><span>role</span><span>'</span><span>:</span> <span>'</span><span>user</span><span>'</span><span>,</span> <span>'</span><span>content</span><span>'</span><span>:</span> <span>user_input</span> <span>}])</span> <span>print</span><span>(</span><span>"</span><span>Assistant:</span><span>"</span><span>,</span> <span>response</span><span>[</span><span>'</span><span>message</span><span>'</span><span>][</span><span>'</span><span>content</span><span>'</span><span>])</span>import ollama # Initialize conversation with the model response = ollama.chat(model='deepseek-r1', messages=[{ 'role': 'user', 'content': 'Hello, who are you?' }]) # Print the response print(response['message']['content']) # Continue conversation while True: user_input = input("You: ") if user_input.lower() == 'exit': break response = ollama.chat(model='deepseek-r1', messages=[{ 'role': 'user', 'content': user_input }]) print("Assistant:", response['message']['content'])
Enter fullscreen mode Exit fullscreen mode
Running the Code in a Virtual Environment
To execute your code in the virtual environment:
- Open Visual Studio Code.
- Press Ctrl+Shift+P and select Python: Select Interpreter.
- Choose the env1 virtual environment to run your code.
- Click Run.
You can monitor your GPU performance using Task Manager.
Conclusion
You’ve successfully installed Ollama with DeepSeek-r1 on your Windows and integrated it with Python. Whether you’re working on an AI-powered project or exploring conversational AI, this setup provides you with a solid foundation to create intelligent applications.
原文链接:How to Install Ollama with DeepSeek-r1 and Integrate it with Python on Windows
暂无评论内容