This guide demonstrates how to use facenet-pytorch
to implement a tool for detecting face similarity. Built on the FaceNet
model, which generates high-quality face embeddings, the tool compares a target image with multiple pictures to identify the most similar face. Here the process to get started.
**
Key Tools and Libraries**
- PyTorch: For deep learning operations.
- FaceNet-PyTorch: Provides pre-trained models for face detection and embedding.
- Pillow (PIL): For image manipulation.
- Matplotlib: For visualizing results.
We’ll use two main models:
- MTCNN: For detecting faces.
- InceptionResnetV1: For extracting face embeddings.
Initialization
import torch
from facenet_pytorch import MTCNN, InceptionResnetV1
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
# Initialize the MTCNN module for face detection and the InceptionResnetV1 module for face embedding. mtcnn = MTCNN(image_size=160, keep_all=True)
resnet = InceptionResnetV1(pretrained='vggface2').eval()
Enter fullscreen mode Exit fullscreen mode
Function Definitions
1. Load Image and Extract Embedding:
This function loads an image from a URL, detects the face, and computes the embedding.
def get_embedding_and_face(image_path):
"""Load an image, detect the face, and return the embedding and face."""
try:
response = requests.get(image_path)
response.raise_for_status()
content_type = response.headers.get('Content-Type')
if 'image' not in content_type:
raise ValueError(f"URL does not point to an image: {content_type}")
image = Image.open(BytesIO(response.content)).convert("RGB")
except Exception as e:
print(f"Error loading image from {image_path}: {e}")
return None, None
faces, probs = mtcnn(image, return_prob=True)
if faces is None or len(faces) == 0:
return None, None
embedding = resnet(faces[0].unsqueeze(0))
return embedding, faces[0]
Enter fullscreen mode Exit fullscreen mode
2. Convert Tensor to Image:
This function prepares a tensor for visualization.
def tensor_to_image(tensor):
"""Convert a normalized tensor to a valid image array."""
image = tensor.permute(1, 2, 0).detach().numpy()
image = (image - image.min()) / (image.max() - image.min())
image = (image * 255).astype('uint8')
return image
Enter fullscreen mode Exit fullscreen mode
3. Find the Most Similar Face:
This function compares the embeddings of the target image with the candidates.
def find_most_similar(target_image_path, candidate_image_paths):
"""Find the most similar image to the target image from a list of candidate images."""
target_emb, target_face = get_embedding_and_face(target_image_path)
if target_emb is None:
raise ValueError("No face detected in the target image.")
highest_similarity = float('-inf')
most_similar_face = None
most_similar_image_path = None
candidate_faces = []
similarities = []
for candidate_image_path in candidate_image_paths:
candidate_emb, candidate_face = get_embedding_and_face(candidate_image_path)
if candidate_emb is None:
similarities.append(None)
candidate_faces.append(None)
continue
similarity = torch.nn.functional.cosine_similarity(target_emb, candidate_emb).item()
similarities.append(similarity)
candidate_faces.append(candidate_face)
if similarity > highest_similarity:
highest_similarity = similarity
most_similar_face = candidate_face
most_similar_image_path = candidate_image_path
# Visualization plt.figure(figsize=(12, 8))
# Display target image plt.subplot(2, len(candidate_image_paths) + 1, 1)
plt.imshow(tensor_to_image(target_face))
plt.title("Target Image")
plt.axis("off")
# Display most similar image if most_similar_face is not None:
plt.subplot(2, len(candidate_image_paths) + 1, 2)
plt.imshow(tensor_to_image(most_similar_face))
plt.title("Most Similar")
plt.axis("off")
# Display all candidate images with similarity scores for idx, (candidate_face, similarity) in enumerate(zip(candidate_faces, similarities)):
plt.subplot(2, len(candidate_image_paths) + 1, idx + len(candidate_image_paths) + 2)
if candidate_face is not None:
plt.imshow(tensor_to_image(candidate_face))
plt.title(f"Score: {similarity * 100:.2f}%")
else:
plt.title("No Face")
plt.axis("off")
plt.tight_layout()
plt.show()
if most_similar_image_path is None:
raise ValueError("No faces detected in the candidate images.")
return most_similar_image_path, highest_similarity
Enter fullscreen mode Exit fullscreen mode
Usage
URLs of the images to compare:
image_url_target = 'https://d1mnxluw9mpf9w.cloudfront.net/media/7588/4x3/1200.jpg'
candidate_image_urls = [
'https://beyondthesinglestory.wordpress.com/wp-content/uploads/2021/04/elon_musk_royal_society_crop1.jpg',
'https://cdn.britannica.com/56/199056-050-CCC44482/Jeff-Bezos-2017.jpg',
'https://cdn.britannica.com/45/188745-050-7B822E21/Richard-Branson-2003.jpg'
]
most_similar_image, similarity_score = find_most_similar(image_url_target, candidate_image_urls)
print(f"The most similar image is: {most_similar_image}")
print(f"Similarity score: {similarity_score * 100:.2f}%")
Enter fullscreen mode Exit fullscreen mode
Result
Conclusion
This example demonstrates the power of facenet-pytorch
for facial recognition tasks. By combining face detection and embedding, we can create tools for various applications, such as identity verification, or content filtering.
暂无评论内容