*Memos:
- My post explains CocoCaptions() using
train2014
withcaptions_train2014.json
,instances_train2014.json
andperson_keypoints_train2014.json
,val2014
withcaptions_val2014.json
,instances_val2014.json
andperson_keypoints_val2014.json
andtest2017
withimage_info_test2014.json
,image_info_test2015.json
andimage_info_test-dev2015.json
. - My post explains CocoCaptions() using
train2017
withcaptions_train2017.json
,instances_train2017.json
andperson_keypoints_train2017.json
,val2017
withcaptions_val2017.json
,instances_val2017.json
andperson_keypoints_val2017.json
andtest2017
withimage_info_test2017.json
andimage_info_test-dev2017.json
. - My post explains CocoDetection() using
train2014
withcaptions_train2014.json
,instances_train2014.json
andperson_keypoints_train2014.json
,val2014
withcaptions_val2014.json
,instances_val2014.json
andperson_keypoints_val2014.json
andtest2017
withimage_info_test2014.json
,image_info_test2015.json
andimage_info_test-dev2015.json
. - My post explains CocoDetection() using
train2017
withcaptions_train2017.json
,instances_train2017.json
andperson_keypoints_train2017.json
,val2017
withcaptions_val2017.json
,instances_val2017.json
andperson_keypoints_val2017.json
andtest2017
withimage_info_test2017.json
andimage_info_test-dev2017.json
. - My post explains CocoDetection() using
train2017
withstuff_train2017.json
,val2017
withstuff_val2017.json
,stuff_train2017_pixelmaps
withstuff_train2017.json
,stuff_val2017_pixelmaps
withstuff_val2017.json
,panoptic_train2017
withpanoptic_train2017.json
,panoptic_val2017
withpanoptic_val2017.json
andunlabeled2017
withimage_info_unlabeled2017.json
. - My post explains MS COCO.
CocoCaptions() can use MS COCO dataset as shown below. *This is for train2017
with stuff_train2017.json
, val2017
with stuff_val2017.json
, stuff_train2017_pixelmaps
with stuff_train2017.json
, stuff_val2017_pixelmaps
with stuff_val2017.json
, panoptic_train2017
with panoptic_train2017.json
, panoptic_val2017
with panoptic_val2017.json
and unlabeled2017
with image_info_unlabeled2017.json
:
from torchvision.datasets import CocoCaptions
stf_train2017_data = CocoCaptions(
root="data/coco/imgs/train2017",
annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)
stf_val2017_data = CocoCaptions(
root="data/coco/imgs/val2017",
annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)
len(stf_train2017_data), len(stf_val2017_data)
# (118287, 5000)
pms_stf_train2017_data = CocoCaptions(
root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps",
annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json"
)
pms_stf_val2017_data = CocoCaptions(
root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps",
annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json"
)
len(pms_stf_train2017_data), len(pms_stf_val2017_data)
# (118287, 5000)
# pan_train2017_data = CocoCaptions( # root="data/coco/anns/panoptic_trainval2017/panoptic_train2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json" # ) # Error
# pan_val2017_data = CocoCaptions( # root="data/coco/anns/panoptic_trainval2017/panoptic_val2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json" # ) # Error
unlabeled2017_data = CocoCaptions(
root="data/coco/imgs/unlabeled2017",
annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json"
)
len(unlabeled2017_data)
# 123403
stf_train2017_data[2] # Error
stf_train2017_data[47] # Error
stf_train2017_data[64] # Error
stf_val2017_data[2] # Error
stf_val2017_data[47] # Error
stf_val2017_data[64] # Error
pms_stf_train2017_data[2] # Error
pms_stf_train2017_data[47] # Error
pms_stf_train2017_data[64] # Error
pms_stf_val2017_data[2] # Error
pms_stf_val2017_data[47] # Error
pms_stf_val2017_data[64] # Error
unlabeled2017_data[2]
# (<PIL.Image.Image image mode=RGB size=640x427>, [])
unlabeled2017_data[47]
# (<PIL.Image.Image image mode=RGB size=428x640>, [])
unlabeled2017_data[64]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
file = data.root.split('/')[-1]
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
fig.suptitle(t=main_title, y=0.9, fontsize=14)
for i, axis in zip(ims, axes.ravel()):
if not data[i][1]:
im, _ = data[i]
axis.imshow(X=im)
fig.tight_layout()
plt.show()
ims = (2, 47, 64)
show_images(data=unlabeled2017_data, ims=ims,
main_title="unlabeled2017_data")
Enter fullscreen mode Exit fullscreen mode
© 版权声明
THE END
暂无评论内容