*Memos:
- My post explains CocoCaptions() using
train2017
withcaptions_train2017.json
,instances_train2017.json
andperson_keypoints_train2017.json
,val2017
withcaptions_val2017.json
,instances_val2017.json
andperson_keypoints_val2017.json
andtest2017
withimage_info_test2017.json
andimage_info_test-dev2017.json
. - My post explains CocoCaptions() using
train2017
withstuff_train2017.json
,val2017
withstuff_val2017.json
,stuff_train2017_pixelmaps
withstuff_train2017.json
,stuff_val2017_pixelmaps
withstuff_val2017.json
,panoptic_train2017
withpanoptic_train2017.json
,panoptic_val2017
withpanoptic_val2017.json
andunlabeled2017
withimage_info_unlabeled2017.json
. - My post explains CocoDetection() using
train2014
withcaptions_train2014.json
,instances_train2014.json
andperson_keypoints_train2014.json
,val2014
withcaptions_val2014.json
,instances_val2014.json
andperson_keypoints_val2014.json
andtest2017
withimage_info_test2014.json
,image_info_test2015.json
andimage_info_test-dev2015.json
. - My post explains CocoDetection() using
train2017
withcaptions_train2017.json
,instances_train2017.json
andperson_keypoints_train2017.json
,val2017
withcaptions_val2017.json
,instances_val2017.json
andperson_keypoints_val2017.json
andtest2017
withimage_info_test2017.json
andimage_info_test-dev2017.json
. - My post explains CocoDetection() using
train2017
withstuff_train2017.json
,val2017
withstuff_val2017.json
,stuff_train2017_pixelmaps
withstuff_train2017.json
,stuff_val2017_pixelmaps
withstuff_val2017.json
,panoptic_train2017
withpanoptic_train2017.json
,panoptic_val2017
withpanoptic_val2017.json
andunlabeled2017
withimage_info_unlabeled2017.json
. - My post explains MS COCO.
CocoCaptions() can use MS COCO dataset as shown below. *This is for train2014
with captions_train2014.json
, instances_train2014.json
and person_keypoints_train2014.json
, val2014
with captions_val2014.json
, instances_val2014.json
and person_keypoints_val2014.json
and test2017
with image_info_test2014.json
, image_info_test2015.json
and image_info_test-dev2015.json
:
*Memos:
- The 1st argument is
root
(Required-Type:str
orpathlib.Path
): *Memos:- It’s the path to the images.
- An absolute or relative path is possible.
- The 2nd argument is
annFile
(Required-Type:str
orpathlib.Path
): *Memos:- It’s the path to the annotations.
- An absolute or relative path is possible.
- The 3rd argument is
transform
(Optional-Default:None
-Type:callable
). - The 4th argument is
target_transform
(Optional-Default:None
-Type:callable
). - The 5th argument is
transforms
(Optional-Default:None
-Type:callable
). - It must need
pycocotools
on Windows, Linux and macOS: *Memos:- e.g.
pip install pycocotools
. - e.g.
conda install conda-forge::pycocotools
. - Don’t use the ways to install
pycocotools
from cocodataset/cocoapi and philferriere/cocoapi because they don’t work and even if they are possible, they take a long time to installpycocotools
.
- e.g.
- You need to manually download and extract the datasets(images and annotations) which you want to
coco/
from here as shown below. *You can use other folder structure:
data
└-coco
|-imgs
| |-train2014
| | |-COCO_train2014_000000000009.jpg
| | |-COCO_train2014_000000000025.jpg
| | |-COCO_train2014_000000000030.jpg
| | ...
| |-val2014/
| |-test2014/
| |-test2015/
| |-train2017/
| |-val2017/
| |-test2017/
| └-unlabeled2017/
└-anns
|-trainval2014
| |-captions_train2014.json
| |-instances_train2014.json
| |-person_keypoints_train2014.json
| |-captions_val2014.json
| |-instances_val2014.json
| └-person_keypoints_val2014.json
|-test2014
| └-image_info_test2014.json
|-test2015
| |-image_info_test2015.json
| └-image_info_test-dev2015.json
|-trainval2017
| |-captions_train2017.json
| |-instances_train2017.json
| |-person_keypoints_train2017.json
| |-captions_val2017.json
| |-instances_val2017.json
| └-person_keypoints_val2017.json
|-test2017
| |-image_info_test2017.json
| └-image_info_test-dev2017.json
|-stuff_trainval2017
| |-stuff_train2017.json
| |-stuff_val2017.json
| |-stuff_train2017_pixelmaps/
| | |-000000000009.png
| | |-000000000025.png
| | |-000000000030.png
| | ...
| |-stuff_val2017_pixelmaps/
| └-deprecated-challenge2017
| |-train-ids.txt
| └-val-ids.txt
|-panoptic_trainval2017
| |-panoptic_train2017.json
| |-panoptic_val2017.json
| |-panoptic_train2017/
| | |-000000000389.png
| | |-000000000404.png
| | |-000000000438.png
| | ...
| └-panoptic_val2017/
└-unlabeled2017
└-image_info_unlabeled2017.json
Enter fullscreen mode Exit fullscreen mode
from torchvision.datasets import CocoCaptions
cap_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/captions_train2014.json"
)
cap_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/captions_train2014.json",
transform=None,
target_transform=None,
transforms=None
)
ins_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/instances_train2014.json"
)
pk_train2014_data = CocoCaptions(
root="data/coco/imgs/train2014",
annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json"
)
len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data)
# (82783, 82783, 82783)
cap_val2014_data = CocoCaptions(
root="data/coco/imgs/val2014",
annFile="data/coco/anns/trainval2014/captions_val2014.json"
)
ins_val2014_data = CocoCaptions(
root="data/coco/imgs/val2014",
annFile="data/coco/anns/trainval2014/instances_val2014.json"
)
pk_val2014_data = CocoCaptions(
root="data/coco/imgs/val2014",
annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json"
)
len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data)
# (40504, 40504, 40504)
test2014_data = CocoCaptions(
root="data/coco/imgs/test2014",
annFile="data/coco/anns/test2014/image_info_test2014.json"
)
test2015_data = CocoCaptions(
root="data/coco/imgs/test2015",
annFile="data/coco/anns/test2015/image_info_test2015.json"
)
testdev2015_data = CocoCaptions(
root="data/coco/imgs/test2015",
annFile="data/coco/anns/test2015/image_info_test-dev2015.json"
)
len(test2014_data), len(test2015_data), len(testdev2015_data)
# (40775, 81434, 20288)
cap_train2014_data
# Dataset CocoCaptions # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014
cap_train2014_data.root
# 'data/coco/imgs/train2014'
print(cap_train2014_data.transform)
# None
print(cap_train2014_data.target_transform)
# None
print(cap_train2014_data.transforms)
# None
cap_train2014_data.coco
# <pycocotools.coco.COCO at 0x759028ee1d00>
cap_train2014_data[26]
# (<PIL.Image.Image image mode=RGB size=427x640>, # ['three zeebras standing in a grassy field walking', # 'Three zebras are standing in an open field.', # 'Three zebra are walking through the grass of a field.', # 'Three zebras standing on a grassy dirt field.', # 'Three zebras grazing in green grass field area.'])
cap_train2014_data[179]
# (<PIL.Image.Image image mode=RGB size=480x640>, # ['a young guy walking in a forrest holding an object in his hand', # 'A partially black and white photo of a man throwing ... the woods.', # 'A disc golfer releases a throw from a dirt tee ... wooded course.', # 'The person is in the clearing of a wooded area. ', # 'a person throwing a frisbee at many trees '])
cap_train2014_data[194]
# (<PIL.Image.Image image mode=RGB size=428x640>, # ['A person on a court with a tennis racket.', # 'A man that is holding a racquet standing in the grass.', # 'A tennis player hits the ball during a match.', # 'The tennis player is poised to serve a ball.', # 'Man in white playing tennis on a court.'])
ins_train2014_data[26] # Error
ins_train2014_data[179] # Error
ins_train2014_data[194] # Error
pk_train2014_data[26]
# (<PIL.Image.Image image mode=RGB size=427x640>, [])
pk_train2014_data[179] # Error
pk_train2014_data[194] # Error
cap_val2014_data[26]
# (<PIL.Image.Image image mode=RGB size=640x360>, # ['a close up of a child next to a cake with balloons', # 'A baby sitting in front of a cake wearing a tie.', # 'The young boy is dressed in a tie that matches his cake. ', # 'A child eating a birthday cake near some balloons.', # 'A baby eating a cake with a tie around ... the background.'])
cap_val2014_data[179]
# (<PIL.Image.Image image mode=RGB size=500x302>, # ['Many small children are posing together in the ... white photo. ', # 'A vintage school picture of grade school aged children.', # 'A black and white photo of a group of kids.', # 'A group of children standing next to each other.', # 'A group of children standing and sitting beside each other. '])
cap_val2014_data[194]
# (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man hitting a tennis ball with a racquet.', # 'champion tennis player swats at the ball hoping to win', # 'A man is hitting his tennis ball with a recket on the court.', # 'a tennis player on a court with a racket', # 'A professional tennis player hits a ball as fans watch.'])
ins_val2014_data[26] # Error
ins_val2014_data[179] # Error
ins_val2014_data[194] # Error
pk_val2014_data[26] # Error
pk_val2014_data[179] # Error
pk_val2014_data[194] # Error
test2014_data[26]
# (<PIL.Image.Image image mode=RGB size=640x640>, [])
test2014_data[179]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
test2014_data[194]
# (<PIL.Image.Image image mode=RGB size=640x360>, [])
test2015_data[26]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
test2015_data[179]
# (<PIL.Image.Image image mode=RGB size=640x426>, [])
test2015_data[194]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
testdev2015_data[26]
# (<PIL.Image.Image image mode=RGB size=640x360>, [])
testdev2015_data[179]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
testdev2015_data[194]
# (<PIL.Image.Image image mode=RGB size=640x480>, [])
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
file = data.root.split('/')[-1]
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
fig.suptitle(t=main_title, y=0.9, fontsize=14)
x_crd = 0.02
for i, axis in zip(ims, axes.ravel()):
if data[i][1]:
im, anns = data[i]
axis.imshow(X=im)
y_crd = 0.0
for j, ann in enumerate(iterable=anns):
text_list = ann.split()
if len(text_list) > 9:
text = " ".join(text_list[0:10]) + " ..."
else:
text = " ".join(text_list)
plt.figtext(x=x_crd, y=y_crd, fontsize=10,
s=f'{j}:\n{text}')
y_crd -= 0.06
x_crd += 0.325
if i == 2 and file == "val2017":
x_crd += 0.06
elif not data[i][1]:
im, _ = data[i]
axis.imshow(X=im)
fig.tight_layout()
plt.show()
ims = (26, 179, 194)
show_images(data=cap_train2014_data, ims=ims,
main_title="cap_train2014_data")
show_images(data=cap_val2014_data, ims=ims,
main_title="cap_val2014_data")
show_images(data=test2014_data, ims=ims,
main_title="test2014_data")
show_images(data=test2015_data, ims=ims,
main_title="test2015_data")
show_images(data=testdev2015_data, ims=ims,
main_title="testdev2015_data")
Enter fullscreen mode Exit fullscreen mode
© 版权声明
THE END
暂无评论内容