CocoCaptions in PyTorch (1)

Buy Me a Coffee

*Memos:

  • My post explains CocoCaptions() using train2017 with captions_train2017.json, instances_train2017.json and person_keypoints_train2017.json, val2017 with captions_val2017.json, instances_val2017.json and person_keypoints_val2017.json and test2017 with image_info_test2017.json and image_info_test-dev2017.json.
  • My post explains CocoCaptions() using train2017 with stuff_train2017.json, val2017 with stuff_val2017.json, stuff_train2017_pixelmaps with stuff_train2017.json, stuff_val2017_pixelmaps with stuff_val2017.json, panoptic_train2017 with panoptic_train2017.json, panoptic_val2017 with panoptic_val2017.json and unlabeled2017 with image_info_unlabeled2017.json.
  • My post explains CocoDetection() using train2014 with captions_train2014.json, instances_train2014.json and person_keypoints_train2014.json, val2014 with captions_val2014.json, instances_val2014.json and person_keypoints_val2014.json and test2017 with image_info_test2014.json, image_info_test2015.json and image_info_test-dev2015.json.
  • My post explains CocoDetection() using train2017 with captions_train2017.json, instances_train2017.json and person_keypoints_train2017.json, val2017 with captions_val2017.json, instances_val2017.json and person_keypoints_val2017.json and test2017 with image_info_test2017.json and image_info_test-dev2017.json.
  • My post explains CocoDetection() using train2017 with stuff_train2017.json, val2017 with stuff_val2017.json, stuff_train2017_pixelmaps with stuff_train2017.json, stuff_val2017_pixelmaps with stuff_val2017.json, panoptic_train2017 with panoptic_train2017.json, panoptic_val2017 with panoptic_val2017.json and unlabeled2017 with image_info_unlabeled2017.json.
  • My post explains MS COCO.

CocoCaptions() can use MS COCO dataset as shown below. *This is for train2014 with captions_train2014.json, instances_train2014.json and person_keypoints_train2014.json, val2014 with captions_val2014.json, instances_val2014.json and person_keypoints_val2014.json and test2017 with image_info_test2014.json, image_info_test2015.json and image_info_test-dev2015.json:

*Memos:

  • The 1st argument is root(Required-Type:str or pathlib.Path): *Memos:
    • It’s the path to the images.
    • An absolute or relative path is possible.
  • The 2nd argument is annFile(Required-Type:str or pathlib.Path): *Memos:
    • It’s the path to the annotations.
    • An absolute or relative path is possible.
  • The 3rd argument is transform(Optional-Default:None-Type:callable).
  • The 4th argument is target_transform(Optional-Default:None-Type:callable).
  • The 5th argument is transforms(Optional-Default:None-Type:callable).
  • It must need pycocotools on Windows, Linux and macOS: *Memos:
    • e.g. pip install pycocotools.
    • e.g. conda install conda-forge::pycocotools.
    • Don’t use the ways to install pycocotools from cocodataset/cocoapi and philferriere/cocoapi because they don’t work and even if they are possible, they take a long time to install pycocotools.
  • You need to manually download and extract the datasets(images and annotations) which you want to coco/ from here as shown below. *You can use other folder structure:
data 
 └-coco
    |-imgs
    |  |-train2014
    |  |  |-COCO_train2014_000000000009.jpg
    |  |  |-COCO_train2014_000000000025.jpg
    |  |  |-COCO_train2014_000000000030.jpg
    |  |  ...
    |  |-val2014/
    |  |-test2014/
    |  |-test2015/
    |  |-train2017/
    |  |-val2017/
    |  |-test2017/
    |  └-unlabeled2017/
    └-anns
       |-trainval2014
       |  |-captions_train2014.json
       |  |-instances_train2014.json
       |  |-person_keypoints_train2014.json
       |  |-captions_val2014.json
       |  |-instances_val2014.json
       |  └-person_keypoints_val2014.json
       |-test2014
       |  └-image_info_test2014.json
       |-test2015
       |  |-image_info_test2015.json
       |  └-image_info_test-dev2015.json
       |-trainval2017
       |  |-captions_train2017.json
       |  |-instances_train2017.json
       |  |-person_keypoints_train2017.json
       |  |-captions_val2017.json
       |  |-instances_val2017.json
       |  └-person_keypoints_val2017.json
       |-test2017
       |  |-image_info_test2017.json
       |  └-image_info_test-dev2017.json
       |-stuff_trainval2017
       |  |-stuff_train2017.json
       |  |-stuff_val2017.json
       |  |-stuff_train2017_pixelmaps/
       |  |  |-000000000009.png
       |  |  |-000000000025.png
       |  |  |-000000000030.png
       |  |  ...
       |  |-stuff_val2017_pixelmaps/
       |  └-deprecated-challenge2017
       |     |-train-ids.txt
       |     └-val-ids.txt
       |-panoptic_trainval2017
       |  |-panoptic_train2017.json
       |  |-panoptic_val2017.json
       |  |-panoptic_train2017/
       |  |  |-000000000389.png
       |  |  |-000000000404.png
       |  |  |-000000000438.png
       |  |  ...
       |  └-panoptic_val2017/
       └-unlabeled2017
          └-image_info_unlabeled2017.json

Enter fullscreen mode Exit fullscreen mode

from torchvision.datasets import CocoCaptions

cap_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/captions_train2014.json"
)

cap_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/captions_train2014.json",
    transform=None,
    target_transform=None,
    transforms=None
)

ins_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/instances_train2014.json"
)

pk_train2014_data = CocoCaptions(
    root="data/coco/imgs/train2014",
    annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json"
)

len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data)
# (82783, 82783, 82783) 
cap_val2014_data = CocoCaptions(
    root="data/coco/imgs/val2014",
    annFile="data/coco/anns/trainval2014/captions_val2014.json"
)

ins_val2014_data = CocoCaptions(
    root="data/coco/imgs/val2014",
    annFile="data/coco/anns/trainval2014/instances_val2014.json"
)

pk_val2014_data = CocoCaptions(
    root="data/coco/imgs/val2014",
    annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json"
)

len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data)
# (40504, 40504, 40504) 
test2014_data = CocoCaptions(
    root="data/coco/imgs/test2014",
    annFile="data/coco/anns/test2014/image_info_test2014.json"
)

test2015_data = CocoCaptions(
    root="data/coco/imgs/test2015",
    annFile="data/coco/anns/test2015/image_info_test2015.json"
)

testdev2015_data = CocoCaptions(
    root="data/coco/imgs/test2015",
    annFile="data/coco/anns/test2015/image_info_test-dev2015.json"
)

len(test2014_data), len(test2015_data), len(testdev2015_data)
# (40775, 81434, 20288) 
cap_train2014_data
# Dataset CocoCaptions # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 
cap_train2014_data.root
# 'data/coco/imgs/train2014' 
print(cap_train2014_data.transform)
# None 
print(cap_train2014_data.target_transform)
# None 
print(cap_train2014_data.transforms)
# None 
cap_train2014_data.coco
# <pycocotools.coco.COCO at 0x759028ee1d00> 
cap_train2014_data[26]
# (<PIL.Image.Image image mode=RGB size=427x640>, # ['three zeebras standing in a grassy field walking', # 'Three zebras are standing in an open field.', # 'Three zebra are walking through the grass of a field.', # 'Three zebras standing on a grassy dirt field.', # 'Three zebras grazing in green grass field area.']) 
cap_train2014_data[179]
# (<PIL.Image.Image image mode=RGB size=480x640>, # ['a young guy walking in a forrest holding an object in his hand', # 'A partially black and white photo of a man throwing ... the woods.', # 'A disc golfer releases a throw from a dirt tee ... wooded course.', # 'The person is in the clearing of a wooded area. ', # 'a person throwing a frisbee at many trees ']) 
cap_train2014_data[194]
# (<PIL.Image.Image image mode=RGB size=428x640>, # ['A person on a court with a tennis racket.', # 'A man that is holding a racquet standing in the grass.', # 'A tennis player hits the ball during a match.', # 'The tennis player is poised to serve a ball.', # 'Man in white playing tennis on a court.']) 
ins_train2014_data[26] # Error 
ins_train2014_data[179] # Error 
ins_train2014_data[194] # Error 
pk_train2014_data[26]
# (<PIL.Image.Image image mode=RGB size=427x640>, []) 
pk_train2014_data[179] # Error 
pk_train2014_data[194] # Error 
cap_val2014_data[26]
# (<PIL.Image.Image image mode=RGB size=640x360>, # ['a close up of a child next to a cake with balloons', # 'A baby sitting in front of a cake wearing a tie.', # 'The young boy is dressed in a tie that matches his cake. ', # 'A child eating a birthday cake near some balloons.', # 'A baby eating a cake with a tie around ... the background.']) 
cap_val2014_data[179]
# (<PIL.Image.Image image mode=RGB size=500x302>, # ['Many small children are posing together in the ... white photo. ', # 'A vintage school picture of grade school aged children.', # 'A black and white photo of a group of kids.', # 'A group of children standing next to each other.', # 'A group of children standing and sitting beside each other. ']) 
cap_val2014_data[194]
# (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man hitting a tennis ball with a racquet.', # 'champion tennis player swats at the ball hoping to win', # 'A man is hitting his tennis ball with a recket on the court.', # 'a tennis player on a court with a racket', # 'A professional tennis player hits a ball as fans watch.']) 
ins_val2014_data[26] # Error 
ins_val2014_data[179] # Error 
ins_val2014_data[194] # Error 
pk_val2014_data[26] # Error 
pk_val2014_data[179] # Error 
pk_val2014_data[194] # Error 
test2014_data[26]
# (<PIL.Image.Image image mode=RGB size=640x640>, []) 
test2014_data[179]
# (<PIL.Image.Image image mode=RGB size=640x480>, []) 
test2014_data[194]
# (<PIL.Image.Image image mode=RGB size=640x360>, []) 
test2015_data[26]
# (<PIL.Image.Image image mode=RGB size=640x480>, []) 
test2015_data[179]
# (<PIL.Image.Image image mode=RGB size=640x426>, []) 
test2015_data[194]
# (<PIL.Image.Image image mode=RGB size=640x480>, []) 
testdev2015_data[26]
# (<PIL.Image.Image image mode=RGB size=640x360>, []) 
testdev2015_data[179]
# (<PIL.Image.Image image mode=RGB size=640x480>, []) 
testdev2015_data[194]
# (<PIL.Image.Image image mode=RGB size=640x480>, []) 
import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    file = data.root.split('/')[-1]
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))
    fig.suptitle(t=main_title, y=0.9, fontsize=14)
    x_crd = 0.02
    for i, axis in zip(ims, axes.ravel()):
        if data[i][1]:
            im, anns = data[i]
            axis.imshow(X=im)
            y_crd = 0.0
            for j, ann in enumerate(iterable=anns):
                text_list = ann.split()
                if len(text_list) > 9:
                    text = " ".join(text_list[0:10]) + " ..."
                else:
                    text = " ".join(text_list)
                plt.figtext(x=x_crd, y=y_crd, fontsize=10,
                            s=f'{j}:\n{text}')
                y_crd -= 0.06
            x_crd += 0.325
            if i == 2 and file == "val2017":
                x_crd += 0.06
        elif not data[i][1]:
            im, _ = data[i]
            axis.imshow(X=im)
    fig.tight_layout()
    plt.show()

ims = (26, 179, 194)

show_images(data=cap_train2014_data, ims=ims,
             main_title="cap_train2014_data")
show_images(data=cap_val2014_data, ims=ims, 
             main_title="cap_val2014_data")
show_images(data=test2014_data, ims=ims,
             main_title="test2014_data")
show_images(data=test2015_data, ims=ims,
             main_title="test2015_data")
show_images(data=testdev2015_data, ims=ims,
             main_title="testdev2015_data")

Enter fullscreen mode Exit fullscreen mode

原文链接:CocoCaptions in PyTorch (1)

© 版权声明
THE END
喜欢就支持一下吧
点赞5 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容