arange in PyTorch

Buy Me a Coffee

*Memos:

arange() can create the 1D tensor of zero or integers or floating-point numbers between start and end-1(start<=x<=end-1) as shown below:

*Memos:

  • arange() can be used with torch but not with a tensor.
  • The 1st argument with torch is start(Optional-Default:0-Type:int, float, complex or bool): *Memos
    • It must be lower than or equal to end.
    • The 0D tensor of int, float, complex or bool also works.
  • The 2nd argument with torch is end(Required-Type:int, float, complex or bool): *Memos:
    • It must be greater than or equal to start.
    • The 0D tensor of int, float, complex or bool also works.
  • The 3rd argument with torch is step(Optional-Default:1-Type:int, float, complex or bool): *Memos:
    • It must be greater than 0.
    • The 0D tensor of int, float, complex or bool also works.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • There is range() which is similar to arange() but range() is deprecated.
<span>import</span> <span>torch</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>end</span><span>=</span><span>5</span><span>)</span>
<span># tensor([0, 1, 2, 3, 4]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>)</span>
<span># tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span>
<span># tensor([5, 8, 11, 14]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>)</span>
<span># tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5</span><span>),</span>
<span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5</span><span>),</span>
<span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3</span><span>))</span>
<span># tensor([-5, -2, 1, 4]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>),</span>
<span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>),</span>
<span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>))</span>
<span># tensor([-5., -2., 1., 4.]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>+</span><span>0.j</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>+</span><span>0.j</span><span>),</span>
<span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>+</span><span>0.j</span><span>),</span>
<span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>+</span><span>0.j</span><span>))</span>
<span># tensor([-5., -2., 1., 4.]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>False</span><span>,</span> <span>end</span><span>=</span><span>True</span><span>,</span> <span>step</span><span>=</span><span>True</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>False</span><span>),</span>
<span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>),</span>
<span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>))</span>
<span># tensor([0]) </span>
<span>import</span> <span>torch</span>

<span>torch</span><span>.</span><span>arange</span><span>(</span><span>end</span><span>=</span><span>5</span><span>)</span>
<span># tensor([0, 1, 2, 3, 4]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>)</span>
<span># tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span>
<span># tensor([5, 8, 11, 14]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>)</span>
<span># tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5</span><span>),</span>
             <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5</span><span>),</span>
             <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3</span><span>))</span>
<span># tensor([-5, -2, 1, 4]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>),</span>
             <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>),</span>
             <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>))</span>
<span># tensor([-5., -2., 1., 4.]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>+</span><span>0.j</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>+</span><span>0.j</span><span>),</span>
             <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>+</span><span>0.j</span><span>),</span>
             <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>+</span><span>0.j</span><span>))</span>
<span># tensor([-5., -2., 1., 4.]) </span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>False</span><span>,</span> <span>end</span><span>=</span><span>True</span><span>,</span> <span>step</span><span>=</span><span>True</span><span>)</span>
<span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>False</span><span>),</span>
             <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>),</span>
             <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>))</span>
<span># tensor([0]) </span>
import torch torch.arange(end=5) # tensor([0, 1, 2, 3, 4]) torch.arange(start=5, end=15) # tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) torch.arange(start=5, end=15, step=3) # tensor([5, 8, 11, 14]) torch.arange(start=-5, end=5) # tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) torch.arange(start=-5, end=5, step=3) torch.arange(start=torch.tensor(-5), end=torch.tensor(5), step=torch.tensor(3)) # tensor([-5, -2, 1, 4]) torch.arange(start=-5., end=5., step=3.) torch.arange(start=torch.tensor(-5.), end=torch.tensor(5.), step=torch.tensor(3.)) # tensor([-5., -2., 1., 4.]) torch.arange(start=-5.+0.j, end=5.+0.j, step=3.+0.j) torch.arange(start=torch.tensor(-5.+0.j), end=torch.tensor(5.+0.j), step=torch.tensor(3.+0.j)) # tensor([-5., -2., 1., 4.]) torch.arange(start=False, end=True, step=True) torch.arange(start=torch.tensor(False), end=torch.tensor(True), step=torch.tensor(True)) # tensor([0])

Enter fullscreen mode Exit fullscreen mode

原文链接:arange in PyTorch

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享
You see what you believe.
一个人相信什么,就会看见什么
评论 抢沙发

请登录后发表评论

    暂无评论内容