*Memos:
- My post explains linspace().
- My post explains logspace().
arange() can create the 1D tensor of zero or integers or floating-point numbers between start
and end-1
(start
<=x<=end-1
) as shown below:
*Memos:
-
arange()
can be used with torch but not with a tensor. - The 1st argument with
torch
isstart
(Optional-Default:0
-Type:int
,float
,complex
orbool
): *Memos- It must be lower than or equal to
end
. - The 0D tensor of
int
,float
,complex
orbool
also works.
- It must be lower than or equal to
- The 2nd argument with
torch
isend
(Required-Type:int
,float
,complex
orbool
): *Memos:- It must be greater than or equal to
start
. - The 0D tensor of
int
,float
,complex
orbool
also works.
- It must be greater than or equal to
- The 3rd argument with
torch
isstep
(Optional-Default:1
-Type:int
,float
,complex
orbool
): *Memos:- It must be greater than 0.
- The 0D tensor of
int
,float
,complex
orbool
also works.
- There is
dtype
argument withtorch
(Optional-Default:None
-Type:dtype): *Memos:- If it’s
None
, it’s inferred fromstart
,end
orstep
, then for floating-point numbers, get_default_dtype() is used. *My post explainsget_default_dtype()
and set_default_dtype(). -
dtype=
must be used. - My post explains
dtype
argument.
- If it’s
- There is
device
argument withtorch
(Optional-Default:None
-Type:str
,int
or device()): *Memos:- If it’s
None
, get_default_device() is used. *My post explainsget_default_device()
and set_default_device(). -
device=
must be used. - My post explains
device
argument.
- If it’s
- There is
requires_grad
argument withtorch
(Optional-Default:False
-Type:bool
): *Memos:-
requires_grad=
must be used. - My post explains
requires_grad
argument.
-
- There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. - My post explains
out
argument.
-
- There is range() which is similar to
arange()
butrange()
is deprecated.
<span>import</span> <span>torch</span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>end</span><span>=</span><span>5</span><span>)</span><span># tensor([0, 1, 2, 3, 4]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>)</span><span># tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span><span># tensor([5, 8, 11, 14]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>)</span><span># tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5</span><span>),</span><span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5</span><span>),</span><span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3</span><span>))</span><span># tensor([-5, -2, 1, 4]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>)</span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>),</span><span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>),</span><span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>))</span><span># tensor([-5., -2., 1., 4.]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>+</span><span>0.j</span><span>)</span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>+</span><span>0.j</span><span>),</span><span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>+</span><span>0.j</span><span>),</span><span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>+</span><span>0.j</span><span>))</span><span># tensor([-5., -2., 1., 4.]) </span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>False</span><span>,</span> <span>end</span><span>=</span><span>True</span><span>,</span> <span>step</span><span>=</span><span>True</span><span>)</span><span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>False</span><span>),</span><span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>),</span><span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>))</span><span># tensor([0]) </span><span>import</span> <span>torch</span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>end</span><span>=</span><span>5</span><span>)</span> <span># tensor([0, 1, 2, 3, 4]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>)</span> <span># tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>15</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span> <span># tensor([5, 8, 11, 14]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>)</span> <span># tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5</span><span>,</span> <span>end</span><span>=</span><span>5</span><span>,</span> <span>step</span><span>=</span><span>3</span><span>)</span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5</span><span>),</span> <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5</span><span>),</span> <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3</span><span>))</span> <span># tensor([-5, -2, 1, 4]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>)</span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>),</span> <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>),</span> <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>))</span> <span># tensor([-5., -2., 1., 4.]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=-</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>end</span><span>=</span><span>5.</span><span>+</span><span>0.j</span><span>,</span> <span>step</span><span>=</span><span>3.</span><span>+</span><span>0.j</span><span>)</span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>-</span><span>5.</span><span>+</span><span>0.j</span><span>),</span> <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>5.</span><span>+</span><span>0.j</span><span>),</span> <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>3.</span><span>+</span><span>0.j</span><span>))</span> <span># tensor([-5., -2., 1., 4.]) </span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>False</span><span>,</span> <span>end</span><span>=</span><span>True</span><span>,</span> <span>step</span><span>=</span><span>True</span><span>)</span> <span>torch</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>False</span><span>),</span> <span>end</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>),</span> <span>step</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>(</span><span>True</span><span>))</span> <span># tensor([0]) </span>import torch torch.arange(end=5) # tensor([0, 1, 2, 3, 4]) torch.arange(start=5, end=15) # tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) torch.arange(start=5, end=15, step=3) # tensor([5, 8, 11, 14]) torch.arange(start=-5, end=5) # tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) torch.arange(start=-5, end=5, step=3) torch.arange(start=torch.tensor(-5), end=torch.tensor(5), step=torch.tensor(3)) # tensor([-5, -2, 1, 4]) torch.arange(start=-5., end=5., step=3.) torch.arange(start=torch.tensor(-5.), end=torch.tensor(5.), step=torch.tensor(3.)) # tensor([-5., -2., 1., 4.]) torch.arange(start=-5.+0.j, end=5.+0.j, step=3.+0.j) torch.arange(start=torch.tensor(-5.+0.j), end=torch.tensor(5.+0.j), step=torch.tensor(3.+0.j)) # tensor([-5., -2., 1., 4.]) torch.arange(start=False, end=True, step=True) torch.arange(start=torch.tensor(False), end=torch.tensor(True), step=torch.tensor(True)) # tensor([0])
Enter fullscreen mode Exit fullscreen mode
原文链接:arange in PyTorch
© 版权声明
THE END
暂无评论内容