*Memos:
- My post explains Oxford-IIIT Pet.
- My post explains Flowers102().
- My post explains StanfordCars().
OxfordIIITPet() can use Oxford-IIIT Pet dataset as shown below:
*Memos:
- The 1st argument is
root
(Required-Type:str
orpathlib.Path
). *An absolute or relative path is possible. - The 2nd argument is
split
(Optional-Default:"trainval"
-Type:str
). *"trainval"
(3,680 images) or"test"
(3,669 images) can be set to it. - The 3rd argument is
target_types
(Optional-Default:"attr"
-Type:str
orlist
ofstr
): *Memos:-
"category"
,"binary-category"
and/or"segmentation"
can be set to it: *Memos: -
"category"
is for the label from 37 categories(classes). -
"binary-category"
is for the label of cat(0) or dog(1). -
"segmentation"
is for a segmentation trimap image. - An empty tuple or list can also be set to it.
- The multiple same values can be set to it.
- If the order of values is different, the order of their elements is also different.
-
- The 4th argument is
transforms
(Optional-Default:None
-Type:callable
). - The 5th argument is
transform
(Optional-Default:None
-Type:callable
). - The 6th argument is
target_transform
(Optional-Default:None
-Type:callable
). - The 7th argument is
download
(Optional-Default:False
-Type:bool
): *Memos:- If it’s
True
, the dataset is downloaded from the internet and extracted(unzipped) toroot
. - If it’s
True
and the dataset is already downloaded, it’s extracted. - If it’s
True
and the dataset is already downloaded and extracted, nothing happens. - It should be
False
if the dataset is already downloaded and extracted because it’s faster. - You can manually download and extract the dataset(
images.tar.gz
andannotations.tar.gz
) from here todata/oxford-iiit-pet/
.
- If it’s
- About the label from the categories(classes) for the train image indices, Abyssinian(0) is 0~49, American Bulldog(1) is 50~99, American Pit Bull Terrier(2) is 100~149, Basset Hound(3) is 150~199, Beagle(4) is 200~249, Bengal(5) is 250~299, Birman(6) is 300~349, Bombay(7) is 350~398, Boxer(8) is 399~448, British Shorthair(9) is 449~498, etc.
- About the label from the categories(classes) for the test image indices, Abyssinian(0) is 0~97, American Bulldog(1) is 98~197, American Pit Bull Terrier(2) is 198~297, Basset Hound(3) is 298~397, Beagle(4) is 398~497, Bengal(5) is 498~597, Birman(6) is 598~697, Bombay(7) is 698~785, Boxer(8) is 786~884, British Shorthair(9) is 885~984, etc.
from torchvision.datasets import OxfordIIITPet
trainval_cate_data = OxfordIIITPet(
root="data"
)
trainval_cate_data = OxfordIIITPet(
root="data",
split="trainval",
target_types="category",
transform=None,
target_transform=None,
download=False
)
trainval_bincate_data = OxfordIIITPet(
root="data",
split="trainval",
target_types="binary-category"
)
test_seg_data = OxfordIIITPet(
root="data",
split="test",
target_types="segmentation"
)
test_empty_data = OxfordIIITPet(
root="data",
split="test",
target_types=[]
)
test_all_data = OxfordIIITPet(
root="data",
split="test",
target_types=["category", "binary-category", "segmentation"]
)
len(trainval_cate_data), len(trainval_bincate_data)
# (3680, 3680)
len(test_seg_data), len(test_empty_data), len(test_all_data)
# (3669, 3669, 3669)
trainval_cate_data
# Dataset OxfordIIITPet # Number of datapoints: 3680 # Root location: data
trainval_cate_data.root
# 'data'
trainval_cate_data._split
# 'trainval'
trainval_cate_data._target_types
# ['category']
print(trainval_cate_data.transform)
# None
print(trainval_cate_data.target_transform)
# None
trainval_cate_data._download
# <bound method OxfordIIITPet._download of Dataset OxfordIIITPet # Number of datapoints: 3680 # Root location: data>
len(trainval_cate_data.classes), trainval_cate_data.classes
# (37, # ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', # 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', 'Boxer', # 'British Shorthair', ..., 'Wheaten Terrier', 'Yorkshire Terrier'])
trainval_cate_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
trainval_cate_data[1]
# (<PIL.Image.Image image mode=RGB size=450x313>, 0)
trainval_cate_data[2]
# (<PIL.Image.Image image mode=RGB size=500x465>, 0)
trainval_bincate_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)
trainval_bincate_data[1]
# (<PIL.Image.Image image mode=RGB size=450x313>, 0)
trainval_bincate_data[2]
# (<PIL.Image.Image image mode=RGB size=500x465>, 0)
test_seg_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>, # <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)
test_seg_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>, # <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)
test_seg_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>, # <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>)
test_empty_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>, None)
test_empty_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>, None)
test_empty_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>, None)
test_all_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>, # (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>))
test_all_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>, # (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>))
test_all_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>, # (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>))
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
if len(data._target_types) == 0:
plt.figure(figsize=(12, 6))
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
plt.subplot(2, 5, i)
im, _ = data[j]
plt.imshow(X=im)
elif len(data._target_types) == 1:
if data._target_types[0] == "category":
plt.figure(figsize=(12, 6))
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
plt.subplot(2, 5, i)
im, cate = data[j]
plt.imshow(X=im)
plt.title(label=cate)
elif data._target_types[0] == "binary-category":
plt.figure(figsize=(12, 6))
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
plt.subplot(2, 5, i)
im, bincate = data[j]
plt.imshow(X=im)
plt.title(label=bincate)
elif data._target_types[0] == "segmentation":
plt.figure(figsize=(12, 12))
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
im, seg = data[j]
if 1 <= i and i <= 5:
plt.subplot(4, 5, i)
plt.imshow(X=im)
plt.subplot(4, 5, i+5)
plt.imshow(X=seg)
if 6 <= i and i <= 10:
plt.subplot(4, 5, i+5)
plt.imshow(X=im)
plt.subplot(4, 5, i+10)
plt.imshow(X=seg)
elif len(data._target_types) == 3:
plt.figure(figsize=(12, 12))
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
im, (cate, bincate, seg) = data[j]
if 1 <= i and i <= 5:
plt.subplot(4, 5, i)
plt.imshow(X=im)
plt.title(label=f"{cate}, {bincate}")
plt.subplot(4, 5, i+5)
plt.imshow(X=seg)
if 6 <= i and i <= 10:
plt.subplot(4, 5, i+5)
plt.imshow(X=im)
plt.title(label=f"{cate}, {bincate}")
plt.subplot(4, 5, i+10)
plt.imshow(X=seg)
plt.tight_layout(h_pad=3.0)
plt.show()
train_ims = (0, 1, 2, 50, 100, 150, 200, 250, 300, 350)
test_ims = (0, 1, 2, 98, 198, 298, 398, 498, 598, 698)
show_images(data=trainval_cate_data, ims=train_ims,
main_title="trainval_cate_data")
show_images(data=trainval_bincate_data, ims=train_ims,
main_title="trainval_bincate_data")
show_images(data=test_seg_data, ims=test_ims,
main_title="test_seg_data")
show_images(data=test_empty_data, ims=test_ims,
main_title="test_empty_data")
show_images(data=test_all_data, ims=test_ims,
main_title="test_all_data")
Enter fullscreen mode Exit fullscreen mode
© 版权声明
THE END
暂无评论内容