The complete code for C is
#include <math.h> #include <stdio.h> #include <string.h> #include <unistd.h>
typedef struct {
double a1;
double a2;
double a3;
} singleRow;
typedef struct {
singleRow a1;
singleRow a2;
singleRow a3;
} Matrix;
singleRow multiply(singleRow m1, Matrix m2) {
singleRow res;
res.a1 = m1.a1 * m2.a1.a1 + m1.a2 * m2.a2.a1 + m1.a3 * m2.a3.a1;
res.a2 = m1.a1 * m2.a1.a2 + m1.a2 * m2.a2.a2 + m1.a3 * m2.a3.a2;
res.a3 = m1.a1 * m2.a1.a3 + m1.a2 * m2.a2.a3 + m1.a3 * m2.a3.a3;
return res;
}
int main() {
int screen_width = 80, height = 22;
char buffer[1760];
float zBuffer[1760];
float A = 0, B = 0;
int R2 = 2, R1 = 1;
printf("\x1b[2J");
while (1) {
memset(buffer, ' ', 1760);
memset(zBuffer, 0, 7040);
for (float theta = 0; theta < 6.28; theta += 0.07) {
for (float phi = 0; phi < 6.28; phi += 0.02) {
singleRow circle = {2 + cos(theta), sin(theta), 0};
// rotation on Y-axis
Matrix Ry = {{cos(phi), 0, sin(phi)}, {0, 1, 0}, {-sin(phi), 0, cos(phi)}};
// rotation on X-axis
Matrix Rx = {{1, 0, 0}, {0, cos(A), sin(A)}, {0, -sin(A), cos(A)}};
// rotation on Z-axis
Matrix Rz = {{cos(B), sin(B), 0}, {-sin(B), cos(B), 0}, {0, 0, 1}};
singleRow donut = multiply(circle, Ry);
singleRow rotateX = multiply(donut, Rx);
// We will consider it as [Nx, Ny, Nz]
singleRow spinningDonut = multiply(rotateX, Rz);
float reciNz = 1 / (spinningDonut.a3 + 5);
int x = 40 + 30 * spinningDonut.a1 * reciNz;
int y = 12 + 15 * spinningDonut.a2 * reciNz;
// o is index of current buffer
int o = x + screen_width * y;
int L = 8 * (spinningDonut.a2 - spinningDonut.a3 + 2 * cos(B) * sin(A) * sin(phi)
- 2 * cos(phi) * cos(theta) * sin(B)
- 2 * cos(phi) * sin(B)
+ 2 * cos(A) * sin(phi)
);
// donut luminicity will be seen by these characters
// these 12
char charOut[] = ".,-~:;=!*#$@";
if (x < screen_width && y < height && zBuffer[o] < reciNz) {
zBuffer[o] = reciNz;
// If L < 0, . will be buffer
buffer[o] = charOut[L > 0 ? L : 0];
}
}
}
// Clear screen
printf("\x1b[H");
for (int i = 0; i <1761; i++) {
// On every 80th character, new line will be printed
// If there's a reminder then buffer printed
putchar(i % 80 ? buffer[i] : 10);
A += 0.00004;
B += 0.00002;
}
// Timer to slow down speed a bit
usleep(10000);
}
return 0;
}
Enter fullscreen mode Exit fullscreen mode
The complete code for Java is
import java.util.Arrays;
class singleRow {
public double a1;
public double a2;
public double a3;
public singleRow(double a1, double a2, double a3) {
this.a1 = a1;
this.a2 = a2;
this.a3 = a3;
}
}
class Matrix {
public singleRow a1;
public singleRow a2;
public singleRow a3;
public Matrix(singleRow a1, singleRow a2, singleRow a3) {
this.a1 = new singleRow(a1.a1, a1.a2, a1.a3);
this.a2 = new singleRow(a2.a1, a2.a2, a2.a3);
this.a3 = new singleRow(a3.a1, a3.a2, a3.a3);
}
public static singleRow multiply(singleRow m1, Matrix m2) {
singleRow res = new singleRow(0, 0, 0);
res.a1 = (m1.a1 * m2.a1.a1) + (m1.a2 * m2.a2.a1) + (m1.a3 * m2.a3.a1);
res.a2 = (m1.a1 * m2.a1.a2) + (m1.a2 * m2.a2.a2) + (m1.a3 * m2.a3.a2);
res.a3 = (m1.a1 * m2.a1.a3) + (m1.a2 * m2.a2.a3) + (m1.a3 * m2.a3.a3);
return res;
}
}
public class Main {
public static void main() {
int screen_width = 80, height = 22;
char[] buffer = new char[1760];
double[] zBuffer = new double[1760];
double A = 0, B = 0;
int R2 = 2, R1 = 1;
System.out.print("\u001b[2J");
while (true) {
Arrays.fill(buffer, 0, 1760, ' ');
Arrays.fill(zBuffer, 0, 1760, 0);
for (float theta = 0; theta < 6.28; theta += 0.07) {
for (float phi = 0; phi < 6.28; phi += 0.02) {
singleRow circle = {2 + Math.cos(theta), Math.sin(theta), 0};
// rotation on Y-axis
Matrix Ry = new Matrix(
new singleRow(Math.cos(phi), 0, Math.sin(phi)),
new singleRow(0, 1, 0),
new singleRow(-Math.sin(phi), 0, Math.cos(phi))
);
// rotation on X-axis
Matrix Rx = new Matrix(
new singleRow(1, 0, 0),
new singleRow(0, Math.cos(A), Math.sin(A)),
new singleRow(0, -Math.sin(A), Math.cos(A))
);
// rotation on Z-axis
Matrix Rz = new Matrix(
new singleRow(Math.cos(B), Math.sin(B), 0),
new singleRow(-Math.sin(B), Math.cos(B), 0),
new singleRow(0, 0, 1)
);
singleRow donut = Matrix.multiply(circle, Ry);
singleRow rotateX = Matrix.multiply(donut, Rx);
// We will consider it as [Nx, Ny, Nz]
singleRow spinningDonut = Matrix.multiply(rotateX, Rz);
float reciNz = 1 / (spinningDonut.a3 + 5);
int x = 40 + 30 * spinningDonut.a1 * reciNz;
int y = 12 + 15 * spinningDonut.a2 * reciNz;
// o is index of current buffer
int o = x + screen_width * y;
int L = 8 * (spinningDonut.a2 - spinningDonut.a3
+ 2 * Math.cos(B) * Math.sin(A) * Math.sin(phi)
- 2 * Math.cos(phi) * Math.cos(theta) * Math.sin(B)
- 2 * Math.cos(phi) * Math.sin(B)
+ 2 * Math.cos(A) * Math.sin(phi)
);
// donut luminicity will be seen by these characters
// these 12
char[] charOpts = {'.', ',', '-', '~', ':', ';', '=', '!', '*', '#', '$', '@'};
if (x < screen_width && y < height && zBuffer[o] < reciNz) {
zBuffer[o] = reciNz;
// If L < 0, . will be buffer
buffer[o] = charOut[L > 0 ? L : 0];
}
}
}
// Clear screen
System.out.print("\u001b[H");
for (int i = 0; i <1761; i++) {
// On every 80th character, new line will be printed
// If there's a reminder then buffer printed
System.out.print(i % 80 ? buffer[i] : 10);
A += 0.00004;
B += 0.00002;
}
}
}
}
Enter fullscreen mode Exit fullscreen mode
© 版权声明
THE END
暂无评论内容