Datasets for Computer Vision (4)

Buy Me a Coffee

*Memos:

(1) ImageNet(2009):

(2) LSUN(Large-scale Scene Understanding)(2015):

  • has scene images and there are the 10 datasets Bedroom, Bridge, Church Outdoor, Classroom, Conference Room, Dining Room, Kitchen, Living Room, Restaurant and Tower:
    • Bedroom has 3,033,342 bedroom images(3,033,042 for train and 300 for validation).
    • Bridge has 818,987 bridge images(818,687 for train and 300 for validation).
    • Church Outdoor has 126,527 church outdoor images(126,227 for train and 300 for validation).
    • Classroom has 126,527 classroom images(126,227 for train and 300 for validation).
    • Conference Room has 229,369 conference room images(229,069 for train and 300 for validation).
    • Dining Room has 657,871 dining room images(657,571 for train and 300 for validation).
    • Kitchen has 2,212,577 kitchen images(2,212,277 for train and 300 for validation).
    • Living Room has 1,316,102 living room images(1,315,802 for train and 300 for validation).
    • Restaurant has 626,631 restaurant images(626,331 for train and 300 for validation).
    • Tower has 708,564 tower images(708,264 for train and 300 for validation).
  • is LSUN() in PyTorch but it has the bug.

(3) MS COCO(Microsoft Common Objects in Context)(2014):

  • has object images with annotations and there are the 16 datasets 2014 Train images and 2014 Val images with 2014 Train/Val annotations, 2014 Test images with 2014 Testing Image info, 2015 Test images with 2015 Testing Image info, 2017 Train images and 2017 Val images with 2017 Train/Val annotations, 2017 Stuff Train/Val annotations or 2017 Panoptic Train/Val annotations, 2017 Test images with 2017 Testing Image info and 2017 Unlabeled images with 2017 Unlabeled Image info: *Memos:
    • 2014 Train images has 82,782 images.
    • 2014 Val images has 40,504 images.
    • 2014 Train/Val annotations has 123,286 annotations(82,782 for train and 40,504 for validation) for 2014 Train images and 2014 Val images.
    • 2014 Test images has 40,775 images.
    • 2014 Testing Image info has 40,775 annotations for 2014 Test images.
    • 2015 Test images has 81,434 images.
    • 2015 Testing Image info has 101,722 annotations(81,434 annotations and 20,288 dev-annotations) for 2015 Test images.
    • 2017 Train images has 118,287 images.
    • 2017 Val images has 5,000 images.
    • 2017 Train/Val annotations has 123,287 annotations(118,287 for train and 5,000 for validation) for 2017 Train images and 2017 Val images.
    • 2017 Stuff Train/Val annotations has 123,287 annotations(118,287 for train and 5,000 for validation) for 2017 Train images and 2017 Val images.
    • 2017 Panoptic Train/Val annotations has 123,287 annotations(118,287 for train and 5,000 for validation) for 2017 Train images and 2017 Val images.
    • 2017 Test images has 40,670 images.
    • 2017 Testing Image info has 40,670 annotations for 2017 Test images.
    • 2017 Unlabeled images has 123,403 images.
    • 2017 Unlabeled Image info has 123,403 annotations for 2017 Unlabeled images.
  • is also called just COCO.
  • is CocoDetection() and CocoCaptions(): *Memos:

原文链接:Datasets for Computer Vision (4)

© 版权声明
THE END
喜欢就支持一下吧
点赞11 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容