If trying write AI

We tolk a lot about new trend writting code with help AI. If you look into it, it will become obviously: AI capable of replacing small parts of modern code in companies.
Today AI much more effective in areas: detecting objects, words bots and computer vision.

On picture not very hard neural network, which based on a series of convolutions and pulls. This particular design names UNet-Segmentation.

  • Some useful libraries will help to impact data for training network: numpy, pandas, matplotlib
df = pd.read_csv('data/train_masks.csv')
train_df = df[:4000]
val_df = df[4000:]
img_name, mask_rle = train_df.iloc[4]
img = cv2.imread('data/train/{}'.format(img_name))
mask = rle_decode(mask_rle)
df = pd.read_csv('data/train_masks.csv')

train_df = df[:4000]
val_df = df[4000:]

img_name, mask_rle = train_df.iloc[4]

img = cv2.imread('data/train/{}'.format(img_name))
mask = rle_decode(mask_rle)
df = pd.read_csv('data/train_masks.csv') train_df = df[:4000] val_df = df[4000:] img_name, mask_rle = train_df.iloc[4] img = cv2.imread('data/train/{}'.format(img_name)) mask = rle_decode(mask_rle)

Enter fullscreen mode Exit fullscreen mode

  • Next step to success coding AI: copying achitecture to Python (I usually use Google Colab/Jupyter Notebook). Might help: keras
conv_1_1 = Conv2D(32, (3, 3), padding='same')(inp)
conv_1_1 = Activation('relu')(conv_1_1)
conv_1_2 = Conv2D(32, (3, 3), padding='same')(conv_1_1)
conv_1_2 = Activation('relu')(conv_1_2)
pool_1 = MaxPooling2D(2)(conv_1_2)
conv_1_1 = Conv2D(32, (3, 3), padding='same')(inp) 
conv_1_1 = Activation('relu')(conv_1_1) 

conv_1_2 = Conv2D(32, (3, 3), padding='same')(conv_1_1)
conv_1_2 = Activation('relu')(conv_1_2)

pool_1 = MaxPooling2D(2)(conv_1_2)
conv_1_1 = Conv2D(32, (3, 3), padding='same')(inp) conv_1_1 = Activation('relu')(conv_1_1) conv_1_2 = Conv2D(32, (3, 3), padding='same')(conv_1_1) conv_1_2 = Activation('relu')(conv_1_2) pool_1 = MaxPooling2D(2)(conv_1_2)

Enter fullscreen mode Exit fullscreen mode

  • The last one: model training. Sometimes it takes a little time (for me ~ 7 minutes) for complete all areas
model.fit_generator(keras_generator(train_df, batch_size),
steps_per_epoch=100,
epochs=100,
verbose=1,
callbacks=callbacks,
validation_data=keras_generator(val_df, batch_size),
validation_steps=50,
class_weight=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
shuffle=True,
initial_epoch=0)
model.fit_generator(keras_generator(train_df, batch_size),
              steps_per_epoch=100, 
              epochs=100, 
              verbose=1, 
              callbacks=callbacks, 
              validation_data=keras_generator(val_df, batch_size),
              validation_steps=50,
              class_weight=None,
              max_queue_size=10,
              workers=1,
              use_multiprocessing=False,
              shuffle=True,
              initial_epoch=0)
model.fit_generator(keras_generator(train_df, batch_size), steps_per_epoch=100, epochs=100, verbose=1, callbacks=callbacks, validation_data=keras_generator(val_df, batch_size), validation_steps=50, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)

Enter fullscreen mode Exit fullscreen mode

原文链接:If trying write AI

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享
The world is like a mirror: Frown at itand it frowns at you; smile, and it smiles too.
世界犹如一面镜子:朝它皱眉它就朝你皱眉,朝它微笑它也吵你微笑
评论 抢沙发

请登录后发表评论

    暂无评论内容