Comment créer un bot de traduction vocale instantané avec witai

Dans notre monde globalisé, la communication au-delà des frontières linguistiques est plus essentielle que jamais. Dans cet article, nous explorerons comment mettre en place cette technologie pour rendre la communication plus inclusive et accessible à tous.

Le code est disponible ici
sur mon github

Première chose à faire, c’est d’installer les dépendances

blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
chardet==3.0.4
charset-normalizer==3.4.0
click==8.1.7
colorama==0.4.6
Flask==3.0.3
google-api-core==2.22.0
google-auth==2.36.0
google-cloud-texttospeech==2.21.0
googleapis-common-protos==1.65.0
googletrans==4.0.0rc1
grpcio==1.67.1
grpcio-status==1.67.1
gTTS==2.5.3
h11==0.9.0
h2==3.2.0
hpack==3.0.0
hstspreload==2024.11.1
httpcore==0.9.1
httpx==0.13.3
hyperframe==5.2.0
idna==2.10
itsdangerous==2.2.0
Jinja2==3.1.4
Levenshtein==0.26.1
MarkupSafe==3.0.2
playsound==1.2.2
prompt_toolkit==3.0.48
proto-plus==1.25.0
protobuf==5.28.3
pyasn1==0.6.1
pyasn1_modules==0.4.1
PyAudio==0.2.14
python-Levenshtein==0.26.1
RapidFuzz==3.10.1
requests==2.32.3
rfc3986==1.5.0
rsa==4.9
sniffio==1.3.1
SpeechRecognition==3.11.0
typing_extensions==4.12.2
urllib3==2.2.3
wcwidth==0.2.13
Werkzeug==3.1.2
wit==6.0.1
blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
chardet==3.0.4
charset-normalizer==3.4.0
click==8.1.7
colorama==0.4.6
Flask==3.0.3
google-api-core==2.22.0
google-auth==2.36.0
google-cloud-texttospeech==2.21.0
googleapis-common-protos==1.65.0
googletrans==4.0.0rc1
grpcio==1.67.1
grpcio-status==1.67.1
gTTS==2.5.3
h11==0.9.0
h2==3.2.0
hpack==3.0.0
hstspreload==2024.11.1
httpcore==0.9.1
httpx==0.13.3
hyperframe==5.2.0
idna==2.10
itsdangerous==2.2.0
Jinja2==3.1.4
Levenshtein==0.26.1
MarkupSafe==3.0.2
playsound==1.2.2
prompt_toolkit==3.0.48
proto-plus==1.25.0
protobuf==5.28.3
pyasn1==0.6.1
pyasn1_modules==0.4.1
PyAudio==0.2.14
python-Levenshtein==0.26.1
RapidFuzz==3.10.1
requests==2.32.3
rfc3986==1.5.0
rsa==4.9
sniffio==1.3.1
SpeechRecognition==3.11.0
typing_extensions==4.12.2
urllib3==2.2.3
wcwidth==0.2.13
Werkzeug==3.1.2
wit==6.0.1
blinker==1.8.2 cachetools==5.5.0 certifi==2024.8.30 chardet==3.0.4 charset-normalizer==3.4.0 click==8.1.7 colorama==0.4.6 Flask==3.0.3 google-api-core==2.22.0 google-auth==2.36.0 google-cloud-texttospeech==2.21.0 googleapis-common-protos==1.65.0 googletrans==4.0.0rc1 grpcio==1.67.1 grpcio-status==1.67.1 gTTS==2.5.3 h11==0.9.0 h2==3.2.0 hpack==3.0.0 hstspreload==2024.11.1 httpcore==0.9.1 httpx==0.13.3 hyperframe==5.2.0 idna==2.10 itsdangerous==2.2.0 Jinja2==3.1.4 Levenshtein==0.26.1 MarkupSafe==3.0.2 playsound==1.2.2 prompt_toolkit==3.0.48 proto-plus==1.25.0 protobuf==5.28.3 pyasn1==0.6.1 pyasn1_modules==0.4.1 PyAudio==0.2.14 python-Levenshtein==0.26.1 RapidFuzz==3.10.1 requests==2.32.3 rfc3986==1.5.0 rsa==4.9 sniffio==1.3.1 SpeechRecognition==3.11.0 typing_extensions==4.12.2 urllib3==2.2.3 wcwidth==0.2.13 Werkzeug==3.1.2 wit==6.0.1

Enter fullscreen mode Exit fullscreen mode

Convertion audio to text

from gtts import gTTS
import playsound
import os
def speak_translation(text, lang):
tts = gTTS(text=text, lang=lang)
filename = "translation.mp3"
tts.save(filename)
playsound.playsound(filename)
os.remove(filename)
from gtts import gTTS
import playsound
import os

def speak_translation(text, lang):
    tts = gTTS(text=text, lang=lang)
    filename = "translation.mp3"
    tts.save(filename)
    playsound.playsound(filename)
    os.remove(filename)
from gtts import gTTS import playsound import os def speak_translation(text, lang): tts = gTTS(text=text, lang=lang) filename = "translation.mp3" tts.save(filename) playsound.playsound(filename) os.remove(filename)

Enter fullscreen mode Exit fullscreen mode

Google cloud text Speech

from google.cloud import texttospeech
def synthesize_speech(text, language_code="wo-WO", voice_name="wo-WO-Standard-A", output_file="output.mp3"):
client = texttospeech.TextToSpeechClient()
input_text = texttospeech.SynthesisInput(text=text)
# Configurez la voix pour le Wolof
voice = texttospeech.VoiceSelectionParams(
language_code=language_code,
name=voice_name,
ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL,
)
# Paramètres audio
audio_config = texttospeech.AudioConfig(
audio_encoding=texttospeech.AudioEncoding.MP3
)
# Synthèse vocale
response = client.synthesize_speech(
input=input_text, voice=voice, audio_config=audio_config
)
# Sauvegarder le fichier audio
with open(output_file, "wb") as out:
out.write(response.audio_content)
print(f"Audio content written to file {output_file}")
# Utilisez cette fonction avec votre texte
synthesize_speech("Bonjour, je teste la traduction en Wolof.", "wo-WO")
from google.cloud import texttospeech

def synthesize_speech(text, language_code="wo-WO", voice_name="wo-WO-Standard-A", output_file="output.mp3"):
    client = texttospeech.TextToSpeechClient()

    input_text = texttospeech.SynthesisInput(text=text)

    # Configurez la voix pour le Wolof
    voice = texttospeech.VoiceSelectionParams(
        language_code=language_code,
        name=voice_name,
        ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL,
    )

    # Paramètres audio
    audio_config = texttospeech.AudioConfig(
        audio_encoding=texttospeech.AudioEncoding.MP3
    )

    # Synthèse vocale
    response = client.synthesize_speech(
        input=input_text, voice=voice, audio_config=audio_config
    )

    # Sauvegarder le fichier audio
    with open(output_file, "wb") as out:
        out.write(response.audio_content)
        print(f"Audio content written to file {output_file}")

# Utilisez cette fonction avec votre texte
synthesize_speech("Bonjour, je teste la traduction en Wolof.", "wo-WO")
from google.cloud import texttospeech def synthesize_speech(text, language_code="wo-WO", voice_name="wo-WO-Standard-A", output_file="output.mp3"): client = texttospeech.TextToSpeechClient() input_text = texttospeech.SynthesisInput(text=text) # Configurez la voix pour le Wolof voice = texttospeech.VoiceSelectionParams( language_code=language_code, name=voice_name, ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL, ) # Paramètres audio audio_config = texttospeech.AudioConfig( audio_encoding=texttospeech.AudioEncoding.MP3 ) # Synthèse vocale response = client.synthesize_speech( input=input_text, voice=voice, audio_config=audio_config ) # Sauvegarder le fichier audio with open(output_file, "wb") as out: out.write(response.audio_content) print(f"Audio content written to file {output_file}") # Utilisez cette fonction avec votre texte synthesize_speech("Bonjour, je teste la traduction en Wolof.", "wo-WO")

Enter fullscreen mode Exit fullscreen mode

Translation

from googletrans import Translator
def translate_text(text, target_lang):
try:
translator = Translator()
translation = translator.translate(text, dest=target_lang)
print(f"Traduction : {translation.text}")
return translation.text
except Exception as e:
print(f"Erreur lors de la traduction : {e}")
return "Traduction non disponible"
from googletrans import Translator

def translate_text(text, target_lang):
    try:
        translator = Translator()
        translation = translator.translate(text, dest=target_lang)
        print(f"Traduction : {translation.text}")
        return translation.text
    except Exception as e:
        print(f"Erreur lors de la traduction : {e}")
        return "Traduction non disponible"
from googletrans import Translator def translate_text(text, target_lang): try: translator = Translator() translation = translator.translate(text, dest=target_lang) print(f"Traduction : {translation.text}") return translation.text except Exception as e: print(f"Erreur lors de la traduction : {e}") return "Traduction non disponible"

Enter fullscreen mode Exit fullscreen mode

Voice detection

import speech_recognition as sr
def record_audio():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
print("Parlez maintenant...")
audio = recognizer.listen(source)
try:
text = recognizer.recognize_google(audio, language="fr-FR")
print(f"Vous avez dit : {text}")
return text
except sr.UnknownValueError:
print("Désolé, je n'ai pas compris.")
except sr.RequestError as e:
print(f"Erreur de service : {e}")
import speech_recognition as sr

def record_audio():
    recognizer = sr.Recognizer()
    with sr.Microphone() as source:
        print("Parlez maintenant...")
        audio = recognizer.listen(source)
        try:
            text = recognizer.recognize_google(audio, language="fr-FR")
            print(f"Vous avez dit : {text}")
            return text
        except sr.UnknownValueError:
            print("Désolé, je n'ai pas compris.")
        except sr.RequestError as e:
            print(f"Erreur de service : {e}")
import speech_recognition as sr def record_audio(): recognizer = sr.Recognizer() with sr.Microphone() as source: print("Parlez maintenant...") audio = recognizer.listen(source) try: text = recognizer.recognize_google(audio, language="fr-FR") print(f"Vous avez dit : {text}") return text except sr.UnknownValueError: print("Désolé, je n'ai pas compris.") except sr.RequestError as e: print(f"Erreur de service : {e}")

Enter fullscreen mode Exit fullscreen mode

Witai params:
Il faut se rendre sur l’api de Meta (Facebook) pour créer votre jeton

import requests
WIT_AI_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'
def send_to_wit(text):
headers = {'Authorization': f'Bearer {WIT_AI_TOKEN}'}
response = requests.get(f'https://api.wit.ai/message?v=20230414&q={text}', headers=headers)
return response.json()
import requests

WIT_AI_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

def send_to_wit(text):
    headers = {'Authorization': f'Bearer {WIT_AI_TOKEN}'}
    response = requests.get(f'https://api.wit.ai/message?v=20230414&q={text}', headers=headers)
    return response.json()
import requests WIT_AI_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' def send_to_wit(text): headers = {'Authorization': f'Bearer {WIT_AI_TOKEN}'} response = requests.get(f'https://api.wit.ai/message?v=20230414&q={text}', headers=headers) return response.json()

Enter fullscreen mode Exit fullscreen mode

Le fichier main

from flask import Flask, request, jsonify
from convertion_audio_to_text import speak_translation
from translation import translate_text
from voice_detection import record_audio
from witai_params import send_to_wit
import Levenshtein
app = Flask(__name__)
# Langues disponibles
AVAILABLE_LANGUAGES = {
"sw": "Swahili",
"wo": "Wolof",
"fon": "Fon",
"en": "Anglais",
"fr": "Français"
}
def calculate_score(reference_text, user_text):
similarity = Levenshtein.ratio(reference_text.lower(), user_text.lower()) * 100
return round(similarity, 2)
@app.route('/available_languages', methods=['GET'])
def available_languages():
"""Retourne les langues disponibles pour la traduction."""
return jsonify(AVAILABLE_LANGUAGES)
@app.route('/process_audio', methods=['POST'])
def process_audio():
"""Traite l'audio, traduit le texte et évalue la prononciation."""
try:
# Étape 1 : Récupérer la langue cible depuis la requête
target_lang = request.json.get('target_lang')
if not target_lang:
return jsonify({"error": "Paramètre 'target_lang' manquant"}), 400
if target_lang not in AVAILABLE_LANGUAGES:
return jsonify({
"error": f"Langue cible '{target_lang}' non supportée.",
"available_languages": AVAILABLE_LANGUAGES # Retourner la liste des langues disponibles
}), 400
# Étape 2 : Traduire le texte initial
text = record_audio()
if not text:
return jsonify({"error": "No audio detected or transcription failed"}), 400
wit_response = send_to_wit(text)
print("Wit.ai Response:", wit_response)
translation = translate_text(text, target_lang)
speak_translation(translation, lang=target_lang)
# Étape 3 : Boucle de répétition pour évaluer la prononciation
score = 0
while score < 80:
repeat_text = record_audio()
if not repeat_text:
return jsonify({"error": "No repeated audio detected"}), 400
score = calculate_score(translation, repeat_text)
if score >= 80:
message = "Bravo! Félicitations, vous êtes un génie!"
return jsonify({
"original_text": text,
"wit_response": wit_response,
"translated_text": translation,
"repeated_text": repeat_text,
"score": score,
"message": message
}), 200
elif score < 45:
message = "Votre score est faible, améliorez-vous en vous entraînant."
else:
message = "Pas mal! Vous pouvez encore améliorer."
return jsonify({
"translated_text": translation,
"repeated_text": repeat_text,
"score": score,
"message": message,
"retry": True
})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(debug=True)
"""
tu peux tester avec ce code dans le navigateur, tu decommente, puis tu le met la ou il faut
@app.route('/process_audio', methods=['GET', 'POST'])
def process_audio():
if request.method == 'GET':
return jsonify({"message": "Utilisez une requête POST pour traiter l'audio."})
# Continue avec la logique POST
try:
text = record_audio()
if not text:
return jsonify({"error": "No audio detected or transcription failed"}), 400
wit_response = send_to_wit(text)
print("Wit.ai Response:", wit_response)
target_lang = request.json.get('target_lang', 'sw')
translation = translate_text(text, target_lang)
speak_translation(translation, lang=target_lang)
return jsonify({
"original_text": text,
"wit_response": wit_response,
"translated_text": translation
}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
"""
from flask import Flask, request, jsonify
from convertion_audio_to_text import speak_translation
from translation import translate_text
from voice_detection import record_audio
from witai_params import send_to_wit
import Levenshtein

app = Flask(__name__)

# Langues disponibles
AVAILABLE_LANGUAGES = {
    "sw": "Swahili",
    "wo": "Wolof",
    "fon": "Fon",
    "en": "Anglais",
    "fr": "Français"
}

def calculate_score(reference_text, user_text):
    similarity = Levenshtein.ratio(reference_text.lower(), user_text.lower()) * 100
    return round(similarity, 2)

@app.route('/available_languages', methods=['GET'])
def available_languages():
    """Retourne les langues disponibles pour la traduction."""
    return jsonify(AVAILABLE_LANGUAGES)


@app.route('/process_audio', methods=['POST'])
def process_audio():
    """Traite l'audio, traduit le texte et évalue la prononciation."""
    try:
        # Étape 1 : Récupérer la langue cible depuis la requête
        target_lang = request.json.get('target_lang')

        if not target_lang:
            return jsonify({"error": "Paramètre 'target_lang' manquant"}), 400

        if target_lang not in AVAILABLE_LANGUAGES:
            return jsonify({
                "error": f"Langue cible '{target_lang}' non supportée.",
                "available_languages": AVAILABLE_LANGUAGES  # Retourner la liste des langues disponibles
            }), 400

        # Étape 2 : Traduire le texte initial
        text = record_audio()
        if not text:
            return jsonify({"error": "No audio detected or transcription failed"}), 400

        wit_response = send_to_wit(text)
        print("Wit.ai Response:", wit_response)

        translation = translate_text(text, target_lang)
        speak_translation(translation, lang=target_lang)

        # Étape 3 : Boucle de répétition pour évaluer la prononciation
        score = 0
        while score < 80:
            repeat_text = record_audio()
            if not repeat_text:
                return jsonify({"error": "No repeated audio detected"}), 400

            score = calculate_score(translation, repeat_text)
            if score >= 80:
                message = "Bravo! Félicitations, vous êtes un génie!"
                return jsonify({
                    "original_text": text,
                    "wit_response": wit_response,
                    "translated_text": translation,
                    "repeated_text": repeat_text,
                    "score": score,
                    "message": message
                }), 200
            elif score < 45:
                message = "Votre score est faible, améliorez-vous en vous entraînant."
            else:
                message = "Pas mal! Vous pouvez encore améliorer."

            return jsonify({
                "translated_text": translation,
                "repeated_text": repeat_text,
                "score": score,
                "message": message,
                "retry": True
            })

    except Exception as e:
        return jsonify({"error": str(e)}), 500


if __name__ == '__main__':
    app.run(debug=True)


"""
tu peux tester avec ce code dans le navigateur, tu decommente, puis tu le met la ou il faut
@app.route('/process_audio', methods=['GET', 'POST'])
def process_audio():
    if request.method == 'GET':
        return jsonify({"message": "Utilisez une requête POST pour traiter l'audio."})

    # Continue avec la logique POST
    try:
        text = record_audio()
        if not text:
            return jsonify({"error": "No audio detected or transcription failed"}), 400

        wit_response = send_to_wit(text)
        print("Wit.ai Response:", wit_response)

        target_lang = request.json.get('target_lang', 'sw')
        translation = translate_text(text, target_lang)

        speak_translation(translation, lang=target_lang)

        return jsonify({
            "original_text": text,
            "wit_response": wit_response,
            "translated_text": translation
        }), 200
    except Exception as e:
        return jsonify({"error": str(e)}), 500
"""
from flask import Flask, request, jsonify from convertion_audio_to_text import speak_translation from translation import translate_text from voice_detection import record_audio from witai_params import send_to_wit import Levenshtein app = Flask(__name__) # Langues disponibles AVAILABLE_LANGUAGES = { "sw": "Swahili", "wo": "Wolof", "fon": "Fon", "en": "Anglais", "fr": "Français" } def calculate_score(reference_text, user_text): similarity = Levenshtein.ratio(reference_text.lower(), user_text.lower()) * 100 return round(similarity, 2) @app.route('/available_languages', methods=['GET']) def available_languages(): """Retourne les langues disponibles pour la traduction.""" return jsonify(AVAILABLE_LANGUAGES) @app.route('/process_audio', methods=['POST']) def process_audio(): """Traite l'audio, traduit le texte et évalue la prononciation.""" try: # Étape 1 : Récupérer la langue cible depuis la requête target_lang = request.json.get('target_lang') if not target_lang: return jsonify({"error": "Paramètre 'target_lang' manquant"}), 400 if target_lang not in AVAILABLE_LANGUAGES: return jsonify({ "error": f"Langue cible '{target_lang}' non supportée.", "available_languages": AVAILABLE_LANGUAGES # Retourner la liste des langues disponibles }), 400 # Étape 2 : Traduire le texte initial text = record_audio() if not text: return jsonify({"error": "No audio detected or transcription failed"}), 400 wit_response = send_to_wit(text) print("Wit.ai Response:", wit_response) translation = translate_text(text, target_lang) speak_translation(translation, lang=target_lang) # Étape 3 : Boucle de répétition pour évaluer la prononciation score = 0 while score < 80: repeat_text = record_audio() if not repeat_text: return jsonify({"error": "No repeated audio detected"}), 400 score = calculate_score(translation, repeat_text) if score >= 80: message = "Bravo! Félicitations, vous êtes un génie!" return jsonify({ "original_text": text, "wit_response": wit_response, "translated_text": translation, "repeated_text": repeat_text, "score": score, "message": message }), 200 elif score < 45: message = "Votre score est faible, améliorez-vous en vous entraînant." else: message = "Pas mal! Vous pouvez encore améliorer." return jsonify({ "translated_text": translation, "repeated_text": repeat_text, "score": score, "message": message, "retry": True }) except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(debug=True) """ tu peux tester avec ce code dans le navigateur, tu decommente, puis tu le met la ou il faut @app.route('/process_audio', methods=['GET', 'POST']) def process_audio(): if request.method == 'GET': return jsonify({"message": "Utilisez une requête POST pour traiter l'audio."}) # Continue avec la logique POST try: text = record_audio() if not text: return jsonify({"error": "No audio detected or transcription failed"}), 400 wit_response = send_to_wit(text) print("Wit.ai Response:", wit_response) target_lang = request.json.get('target_lang', 'sw') translation = translate_text(text, target_lang) speak_translation(translation, lang=target_lang) return jsonify({ "original_text": text, "wit_response": wit_response, "translated_text": translation }), 200 except Exception as e: return jsonify({"error": str(e)}), 500 """

Enter fullscreen mode Exit fullscreen mode

Concevoir un bot devient de plus en plus facile aujourd’hui pour résoudre des problèmes complexes de notre quotidien. Cependant, cela n’exclut pas l’importance d’apprendre les langues par soi-même. L’utilisation de technologies comme BotAI pour la traduction vocale instantanée doit servir principalement à enrichir nos interactions dans des contextes complexes. En combinant ces outils avec un apprentissage personnel des langues, nous favorisons une communication plus efficace tout en valorisant la richesse linguistique individuelle.

Le code est disponible ici
sur mon github

原文链接:Comment créer un bot de traduction vocale instantané avec witai

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享
Only they who fulfill their duties in everyday matters will fulfill them on great occasions.
只有在日常生活中尽责的人才会在重大时刻尽责
评论 抢沙发

请登录后发表评论

    暂无评论内容