BCELoss in PyTorch

Buy Me a Coffee

*Memos:

BCELoss() can get the 0D or more D tensor of the zero or more values(float) computed by BCE Loss from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is weight(Optional-Default:None-Type:tensor of int, float or bool): *Memos:
    • If it’s not given, it’s 1.
    • It must be the 0D or more D tensor of zero or more elements.
  • There is reduction argument for initialization(Optional-Default:'mean'-Type:str). *'none', 'mean' or 'sum' can be selected.
  • There are size_average and reduce argument for initialization but they are deprecated.
  • The 1st argument is input(Required-Type:tensor of float). *It must be 0<=x<=1.
  • The 2nd argument is target(Required-Type:tensor of float). *It must be 0<=y<=1.
  • input and target must be the same size otherwise there is error.
  • The empty 1D or more D input and target tensor with reduction='mean' return nan.
  • The empty 1D or more D input and target tensor with reduction='sum' return 0..
<span>import</span> <span>torch</span>
<span>from</span> <span>torch</span> <span>import</span> <span>nn</span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.4</span><span>,</span> <span>0.8</span><span>,</span> <span>0.6</span><span>,</span> <span>0.3</span><span>,</span> <span>0.0</span><span>,</span> <span>0.5</span><span>])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.2</span><span>,</span> <span>0.9</span><span>,</span> <span>0.4</span><span>,</span> <span>0.1</span><span>,</span> <span>0.8</span><span>,</span> <span>0.5</span><span>])</span>
<span># -w*(y*log(x)+(1-y)*log(1-x)) </span> <span># -1*(0.2*log(0.4)+(1-0.2)*log(1-0.4)) </span> <span># ↓↓↓↓↓↓ </span> <span># 0.5919 + 0.3618 + 0.7541 + 0.4414 + 80.0 + 0.6931 = 82.8423 </span> <span># 82.8423 / 6 = 13.8071 </span><span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>()</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(7.2500) </span>
<span>bceloss</span>
<span># BCELoss() </span>
<span>print</span><span>(</span><span>bceloss</span><span>.</span><span>weight</span><span>)</span>
<span># None </span>
<span>bceloss</span><span>.</span><span>reduction</span>
<span># 'mean' </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>None</span><span>,</span> <span>reduction</span><span>=</span><span>'</span><span>mean</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.8071) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>sum</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(82.8423) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>none</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor([0.5919, 0.3618, 0.7541, 0.4414, 80.0000, 0.6931]) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.</span><span>,</span> <span>1.</span><span>,</span> <span>2.</span><span>,</span> <span>3.</span><span>,</span> <span>4.</span><span>,</span> <span>5.</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(54.4433) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0</span><span>,</span> <span>1</span><span>,</span> <span>2</span><span>,</span> <span>3</span><span>,</span> <span>4</span><span>,</span> <span>5</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(54.4433) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span>
<span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>True</span><span>,</span> <span>False</span><span>,</span> <span>True</span><span>,</span> <span>False</span><span>,</span> <span>True</span><span>,</span> <span>False</span><span>])</span>
<span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.5577) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>False</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[</span><span>0.4</span><span>,</span> <span>0.8</span><span>,</span> <span>0.6</span><span>],</span> <span>[</span><span>0.3</span><span>,</span> <span>0.0</span><span>,</span> <span>0.5</span><span>]])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[</span><span>0.2</span><span>,</span> <span>0.9</span><span>,</span> <span>0.4</span><span>],</span> <span>[</span><span>0.1</span><span>,</span> <span>0.8</span><span>,</span> <span>0.5</span><span>]])</span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>()</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.8071) </span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[[</span><span>0.4</span><span>],</span> <span>[</span><span>0.8</span><span>],</span> <span>[</span><span>0.6</span><span>]],</span> <span>[[</span><span>0.3</span><span>],</span> <span>[</span><span>0.0</span><span>],</span> <span>[</span><span>0.5</span><span>]]])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[[</span><span>0.2</span><span>],</span> <span>[</span><span>0.9</span><span>],</span> <span>[</span><span>0.4</span><span>]],</span> <span>[[</span><span>0.1</span><span>],</span> <span>[</span><span>0.8</span><span>],</span> <span>[</span><span>0.5</span><span>]]])</span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>()</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.8071) </span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([])</span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>mean</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(nan) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>sum</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>import</span> <span>torch</span>
<span>from</span> <span>torch</span> <span>import</span> <span>nn</span>

<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.4</span><span>,</span> <span>0.8</span><span>,</span> <span>0.6</span><span>,</span> <span>0.3</span><span>,</span> <span>0.0</span><span>,</span> <span>0.5</span><span>])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.2</span><span>,</span> <span>0.9</span><span>,</span> <span>0.4</span><span>,</span> <span>0.1</span><span>,</span> <span>0.8</span><span>,</span> <span>0.5</span><span>])</span>
             <span># -w*(y*log(x)+(1-y)*log(1-x)) </span>             <span># -1*(0.2*log(0.4)+(1-0.2)*log(1-0.4)) </span>             <span># ↓↓↓↓↓↓ </span>             <span># 0.5919 + 0.3618 + 0.7541 + 0.4414 + 80.0 + 0.6931 = 82.8423 </span>             <span># 82.8423 / 6 = 13.8071 </span><span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>()</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(7.2500) </span>
<span>bceloss</span>
<span># BCELoss() </span>
<span>print</span><span>(</span><span>bceloss</span><span>.</span><span>weight</span><span>)</span>
<span># None </span>
<span>bceloss</span><span>.</span><span>reduction</span>
<span># 'mean' </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>None</span><span>,</span> <span>reduction</span><span>=</span><span>'</span><span>mean</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.8071) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>sum</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(82.8423) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>none</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor([0.5919, 0.3618, 0.7541, 0.4414, 80.0000, 0.6931]) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.</span><span>,</span> <span>1.</span><span>,</span> <span>2.</span><span>,</span> <span>3.</span><span>,</span> <span>4.</span><span>,</span> <span>5.</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(54.4433) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0.</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0</span><span>,</span> <span>1</span><span>,</span> <span>2</span><span>,</span> <span>3</span><span>,</span> <span>4</span><span>,</span> <span>5</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(54.4433) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>0</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span>
              <span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>True</span><span>,</span> <span>False</span><span>,</span> <span>True</span><span>,</span> <span>False</span><span>,</span> <span>True</span><span>,</span> <span>False</span><span>])</span>
          <span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.5577) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>weight</span><span>=</span><span>torch</span><span>.</span><span>tensor</span><span>([</span><span>False</span><span>]))</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[</span><span>0.4</span><span>,</span> <span>0.8</span><span>,</span> <span>0.6</span><span>],</span> <span>[</span><span>0.3</span><span>,</span> <span>0.0</span><span>,</span> <span>0.5</span><span>]])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[</span><span>0.2</span><span>,</span> <span>0.9</span><span>,</span> <span>0.4</span><span>],</span> <span>[</span><span>0.1</span><span>,</span> <span>0.8</span><span>,</span> <span>0.5</span><span>]])</span>

<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>()</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.8071) </span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[[</span><span>0.4</span><span>],</span> <span>[</span><span>0.8</span><span>],</span> <span>[</span><span>0.6</span><span>]],</span> <span>[[</span><span>0.3</span><span>],</span> <span>[</span><span>0.0</span><span>],</span> <span>[</span><span>0.5</span><span>]]])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([[[</span><span>0.2</span><span>],</span> <span>[</span><span>0.9</span><span>],</span> <span>[</span><span>0.4</span><span>]],</span> <span>[[</span><span>0.1</span><span>],</span> <span>[</span><span>0.8</span><span>],</span> <span>[</span><span>0.5</span><span>]]])</span>

<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>()</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(13.8071) </span>
<span>tensor1</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([])</span>
<span>tensor2</span> <span>=</span> <span>torch</span><span>.</span><span>tensor</span><span>([])</span>

<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>mean</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(nan) </span>
<span>bceloss</span> <span>=</span> <span>nn</span><span>.</span><span>BCELoss</span><span>(</span><span>reduction</span><span>=</span><span>'</span><span>sum</span><span>'</span><span>)</span>
<span>bceloss</span><span>(</span><span>input</span><span>=</span><span>tensor1</span><span>,</span> <span>target</span><span>=</span><span>tensor2</span><span>)</span>
<span># tensor(0.) </span>
import torch from torch import nn tensor1 = torch.tensor([0.4, 0.8, 0.6, 0.3, 0.0, 0.5]) tensor2 = torch.tensor([0.2, 0.9, 0.4, 0.1, 0.8, 0.5]) # -w*(y*log(x)+(1-y)*log(1-x)) # -1*(0.2*log(0.4)+(1-0.2)*log(1-0.4)) # ↓↓↓↓↓↓ # 0.5919 + 0.3618 + 0.7541 + 0.4414 + 80.0 + 0.6931 = 82.8423 # 82.8423 / 6 = 13.8071 bceloss = nn.BCELoss() bceloss(input=tensor1, target=tensor2) # tensor(7.2500) bceloss # BCELoss() print(bceloss.weight) # None bceloss.reduction # 'mean' bceloss = nn.BCELoss(weight=None, reduction='mean') bceloss(input=tensor1, target=tensor2) # tensor(13.8071) bceloss = nn.BCELoss(reduction='sum') bceloss(input=tensor1, target=tensor2) # tensor(82.8423) bceloss = nn.BCELoss(reduction='none') bceloss(input=tensor1, target=tensor2) # tensor([0.5919, 0.3618, 0.7541, 0.4414, 80.0000, 0.6931]) bceloss = nn.BCELoss(weight=torch.tensor([0., 1., 2., 3., 4., 5.])) bceloss(input=tensor1, target=tensor2) # tensor(54.4433) bceloss = nn.BCELoss(weight=torch.tensor([0.])) bceloss(input=tensor1, target=tensor2) # tensor(0.) bceloss = nn.BCELoss(weight=torch.tensor([0, 1, 2, 3, 4, 5])) bceloss(input=tensor1, target=tensor2) # tensor(54.4433) bceloss = nn.BCELoss(weight=torch.tensor([0])) bceloss(input=tensor1, target=tensor2) # tensor(0.) bceloss = nn.BCELoss( weight=torch.tensor([True, False, True, False, True, False]) ) bceloss(input=tensor1, target=tensor2) # tensor(13.5577) bceloss = nn.BCELoss(weight=torch.tensor([False])) bceloss(input=tensor1, target=tensor2) # tensor(0.) tensor1 = torch.tensor([[0.4, 0.8, 0.6], [0.3, 0.0, 0.5]]) tensor2 = torch.tensor([[0.2, 0.9, 0.4], [0.1, 0.8, 0.5]]) bceloss = nn.BCELoss() bceloss(input=tensor1, target=tensor2) # tensor(13.8071) tensor1 = torch.tensor([[[0.4], [0.8], [0.6]], [[0.3], [0.0], [0.5]]]) tensor2 = torch.tensor([[[0.2], [0.9], [0.4]], [[0.1], [0.8], [0.5]]]) bceloss = nn.BCELoss() bceloss(input=tensor1, target=tensor2) # tensor(13.8071) tensor1 = torch.tensor([]) tensor2 = torch.tensor([]) bceloss = nn.BCELoss(reduction='mean') bceloss(input=tensor1, target=tensor2) # tensor(nan) bceloss = nn.BCELoss(reduction='sum') bceloss(input=tensor1, target=tensor2) # tensor(0.)

Enter fullscreen mode Exit fullscreen mode

原文链接:BCELoss in PyTorch

© 版权声明
THE END
喜欢就支持一下吧
点赞11 分享
Nothing can't be figured out. The past just can't be reached again.
没有什么过不去,只是再也回不去
评论 抢沙发

请登录后发表评论

    暂无评论内容