Numpy Array Object

Numpy (12 Part Series)

1 Introduction to NumPy
2 Numpy Array Object
8 more parts…
3 NumPy Unleashed: Exploring the Power of Special Arrays
4 Understanding Indexing and Slicing in NumPy Arrays
5 Understanding NumPy Data Types.
6 Understanding NumPy: Datatypes, Memory Storage, and Structured Arrays.
7 Understanding NumPy Array Shapes in Python
8 Array Manipulation: A Deep Dive into Insertions and Deletions
9 How to Master Joining and Splitting Numpy Arrays: A Comprehensive Guide
10 Exploring Data with NumPy: A Guide to Statistical Functions in Python
11 Element-Wise Numerical Operations in NumPy: A Practical Guide with Examples
12 Efficient Array Sorting and File I/O Operations in NumPy: A Comprehensive Guide

Understanding NumPy Arrays: Homogeneous Multidimensional Data Structures.

  1. Multidimensional Homogeneous Array:

    • A NumPy array is a fundamental object that represents a multidimensional, homogeneous data structure.
    • “Homogeneous” means that all elements in the array have the same data type (e.g., all integers, all floats, etc.).
  2. Comparison with Python Lists:

    • Unlike Python lists, which can contain elements of different types, a NumPy array enforces a consistent data type for all its elements.
  3. Dimensions and Axes:

    • The dimension of a NumPy array refers to the number of axes it has.
    • For example:
      • A 1-D array (e.g., [1, 2, 3]) behaves like a single axis with three elements. Its length is 3.
      • A 2-D array (e.g., [[1.0, 2.0, 3.0], [4.0, 6.0, 7.0]]) has two axes:
      • The first axis (axis=0) has a length of 2 (i.e., two rows).
      • The second axis (axis=1) has a length of 3 (i.e., three columns).

Creating the NumPy array:

In NumPy, we create N-D arrays using the array() function by passing Python lists or tuples.

Here is the example for 1-D array:

<span>import</span> <span>numpy</span> <span>as</span> <span>np</span>
<span># Using a tuple to create a 1D NumPy array </span><span>array_from_tuple</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>((</span><span>1</span><span>,</span> <span>2</span><span>,</span> <span>3</span><span>,</span> <span>4</span><span>,</span> <span>5</span><span>))</span>
<span># Using a list to create a 1D NumPy array </span><span>array_from_list</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>([</span><span>6</span><span>,</span> <span>7</span><span>,</span> <span>8</span><span>,</span> <span>9</span><span>,</span> <span>10</span><span>])</span>
<span>print</span><span>(</span><span>"</span><span>Array from tuple:</span><span>"</span><span>,</span> <span>array_from_tuple</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Array from list:</span><span>"</span><span>,</span> <span>array_from_list</span><span>)</span>
<span>import</span> <span>numpy</span> <span>as</span> <span>np</span>

<span># Using a tuple to create a 1D NumPy array </span><span>array_from_tuple</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>((</span><span>1</span><span>,</span> <span>2</span><span>,</span> <span>3</span><span>,</span> <span>4</span><span>,</span> <span>5</span><span>))</span>

<span># Using a list to create a 1D NumPy array </span><span>array_from_list</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>([</span><span>6</span><span>,</span> <span>7</span><span>,</span> <span>8</span><span>,</span> <span>9</span><span>,</span> <span>10</span><span>])</span>

<span>print</span><span>(</span><span>"</span><span>Array from tuple:</span><span>"</span><span>,</span> <span>array_from_tuple</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Array from list:</span><span>"</span><span>,</span> <span>array_from_list</span><span>)</span>
import numpy as np # Using a tuple to create a 1D NumPy array array_from_tuple = np.array((1, 2, 3, 4, 5)) # Using a list to create a 1D NumPy array array_from_list = np.array([6, 7, 8, 9, 10]) print("Array from tuple:", array_from_tuple) print("Array from list:", array_from_list)

Enter fullscreen mode Exit fullscreen mode

<span>Output</span><span>:</span>
<span>Array</span> <span>from</span> <span>tuple</span><span>:</span> <span>[</span><span>1</span> <span>2</span> <span>3</span> <span>4</span> <span>5</span><span>]</span>
<span>Array</span> <span>from</span> <span>list</span><span>:</span> <span>[</span> <span>6</span> <span>7</span> <span>8</span> <span>9</span> <span>10</span><span>]</span>
<span>Output</span><span>:</span>
<span>Array</span> <span>from</span> <span>tuple</span><span>:</span> <span>[</span><span>1</span> <span>2</span> <span>3</span> <span>4</span> <span>5</span><span>]</span>
<span>Array</span> <span>from</span> <span>list</span><span>:</span> <span>[</span> <span>6</span>  <span>7</span>  <span>8</span>  <span>9</span> <span>10</span><span>]</span>
Output: Array from tuple: [1 2 3 4 5] Array from list: [ 6 7 8 9 10]

Enter fullscreen mode Exit fullscreen mode

In NumPy, we can explicitly specify the data types of an array using the dtype option in the array() function.
Here is the example:

<span>import</span> <span>numpy</span> <span>as</span> <span>np</span>
<span># Using a tuple to create a 1D NumPy array </span><span>array_from_tuple</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>((</span><span>1</span><span>,</span> <span>2</span><span>,</span> <span>3</span><span>,</span> <span>4</span><span>,</span> <span>5</span><span>),</span> <span>dtype</span><span>=</span><span>float</span><span>)</span>
<span># Using a list to create a 1D NumPy array </span><span>array_from_list</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>([</span><span>6</span><span>,</span> <span>7</span><span>,</span> <span>8</span><span>,</span> <span>9</span><span>,</span> <span>10</span><span>],</span><span>dtype</span><span>=</span><span>complex</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Array from tuple:</span><span>"</span><span>,</span> <span>array_from_tuple</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Array from list:</span><span>"</span><span>,</span> <span>array_from_list</span><span>)</span>
<span>import</span> <span>numpy</span> <span>as</span> <span>np</span>

<span># Using a tuple to create a 1D NumPy array </span><span>array_from_tuple</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>((</span><span>1</span><span>,</span> <span>2</span><span>,</span> <span>3</span><span>,</span> <span>4</span><span>,</span> <span>5</span><span>),</span> <span>dtype</span><span>=</span><span>float</span><span>)</span>

<span># Using a list to create a 1D NumPy array </span><span>array_from_list</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>([</span><span>6</span><span>,</span> <span>7</span><span>,</span> <span>8</span><span>,</span> <span>9</span><span>,</span> <span>10</span><span>],</span><span>dtype</span><span>=</span><span>complex</span><span>)</span>

<span>print</span><span>(</span><span>"</span><span>Array from tuple:</span><span>"</span><span>,</span> <span>array_from_tuple</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Array from list:</span><span>"</span><span>,</span> <span>array_from_list</span><span>)</span>
import numpy as np # Using a tuple to create a 1D NumPy array array_from_tuple = np.array((1, 2, 3, 4, 5), dtype=float) # Using a list to create a 1D NumPy array array_from_list = np.array([6, 7, 8, 9, 10],dtype=complex) print("Array from tuple:", array_from_tuple) print("Array from list:", array_from_list)

Enter fullscreen mode Exit fullscreen mode

<span>Output</span><span>:</span>
<span>Array</span> <span>from</span> <span>tuple</span><span>:</span> <span>[</span><span>1.</span> <span>2.</span> <span>3.</span> <span>4.</span> <span>5.</span><span>]</span>
<span>Array</span> <span>from</span> <span>list</span><span>:</span> <span>[</span> <span>6.</span><span>+</span><span>0.j</span> <span>7.</span><span>+</span><span>0.j</span> <span>8.</span><span>+</span><span>0.j</span> <span>9.</span><span>+</span><span>0.j</span> <span>10.</span><span>+</span><span>0.j</span><span>]</span>
<span>Output</span><span>:</span>
<span>Array</span> <span>from</span> <span>tuple</span><span>:</span> <span>[</span><span>1.</span> <span>2.</span> <span>3.</span> <span>4.</span> <span>5.</span><span>]</span>
<span>Array</span> <span>from</span> <span>list</span><span>:</span> <span>[</span> <span>6.</span><span>+</span><span>0.j</span>  <span>7.</span><span>+</span><span>0.j</span>  <span>8.</span><span>+</span><span>0.j</span>  <span>9.</span><span>+</span><span>0.j</span> <span>10.</span><span>+</span><span>0.j</span><span>]</span>
Output: Array from tuple: [1. 2. 3. 4. 5.] Array from list: [ 6.+0.j 7.+0.j 8.+0.j 9.+0.j 10.+0.j]

Enter fullscreen mode Exit fullscreen mode

I will try to post a separate article on various types of datatypes in NumPy in the upcoming posts.

The array() function in NumPy transforms sequences (such as [1, 2, 3, 4, 5] and (2, 3, 4, 5)) into 1-D arrays. To create a 2-D array, we need to pass sequences of sequences, and for a 3-D array, we use sequences of sequences of sequences and so on.
Here is the following example of 2-D array creation using the array() function:

<span>import</span> <span>numpy</span> <span>as</span> <span>np</span>
<span># Create a 2-D array with specific values </span><span>my_array</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>([(</span><span>10</span><span>,</span> <span>20</span><span>,</span> <span>30</span><span>),</span> <span>(</span><span>40</span><span>,</span> <span>50</span><span>,</span> <span>60</span><span>)])</span>
<span>print</span><span>(</span><span>my_array</span><span>)</span>
<span>import</span> <span>numpy</span> <span>as</span> <span>np</span>

<span># Create a 2-D array with specific values </span><span>my_array</span> <span>=</span> <span>np</span><span>.</span><span>array</span><span>([(</span><span>10</span><span>,</span> <span>20</span><span>,</span> <span>30</span><span>),</span> <span>(</span><span>40</span><span>,</span> <span>50</span><span>,</span> <span>60</span><span>)])</span>

<span>print</span><span>(</span><span>my_array</span><span>)</span>
import numpy as np # Create a 2-D array with specific values my_array = np.array([(10, 20, 30), (40, 50, 60)]) print(my_array)

Enter fullscreen mode Exit fullscreen mode

<span>Output</span><span>:</span>
<span>[[</span><span>10</span> <span>20</span> <span>30</span><span>]</span>
<span>[</span><span>40</span> <span>50</span> <span>60</span><span>]</span>
<span>]</span>
<span>Output</span><span>:</span>
<span>[[</span><span>10</span> <span>20</span> <span>30</span><span>]</span>
 <span>[</span><span>40</span> <span>50</span> <span>60</span><span>]</span>
<span>]</span>
Output: [[10 20 30] [40 50 60] ]

Enter fullscreen mode Exit fullscreen mode

In this code snippet, passing a list of two tuples to the array() function results in a 2-D array, where the first dimension has a length of two(ie.,Rows) and the second, a length of three(ie.,Columns).

Creating the array using numeric range series:-

NumPy provides the arange function, which allows for the creation of an array by specifying a numeric range. This function requires three arguments: start, stop, and step, enabling the construction of an array with the desired sequence of numbers.
Let’s see the following example:

<span># Create an array with even numbers from 10 to 18 </span><span>even_numbers</span> <span>=</span> <span>np</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>10</span><span>,</span> <span>stop</span><span>=</span><span>20</span><span>,</span> <span>step</span><span>=</span><span>2</span><span>)</span>
<span>print</span><span>(</span><span>even_numbers</span><span>)</span>
<span># Create an array with even numbers from 10 to 18 </span><span>even_numbers</span> <span>=</span> <span>np</span><span>.</span><span>arange</span><span>(</span><span>start</span><span>=</span><span>10</span><span>,</span> <span>stop</span><span>=</span><span>20</span><span>,</span> <span>step</span><span>=</span><span>2</span><span>)</span>

<span>print</span><span>(</span><span>even_numbers</span><span>)</span>
# Create an array with even numbers from 10 to 18 even_numbers = np.arange(start=10, stop=20, step=2) print(even_numbers)

Enter fullscreen mode Exit fullscreen mode

<span>[</span><span>10</span> <span>12</span> <span>14</span> <span>16</span> <span>18</span><span>]</span>
<span>[</span><span>10</span> <span>12</span> <span>14</span> <span>16</span> <span>18</span><span>]</span>
[10 12 14 16 18]

Enter fullscreen mode Exit fullscreen mode

Remember, the stop value is not included in the array, and the step defines the difference between each number in the sequence. You can also use non-integer steps, such as 0.5, to create arrays with decimal numbers.

In summary, NumPy arrays provide efficient and flexible ways to work with multi-dimensional data, ensuring consistent data types across elements.

Numpy (12 Part Series)

1 Introduction to NumPy
2 Numpy Array Object
8 more parts…
3 NumPy Unleashed: Exploring the Power of Special Arrays
4 Understanding Indexing and Slicing in NumPy Arrays
5 Understanding NumPy Data Types.
6 Understanding NumPy: Datatypes, Memory Storage, and Structured Arrays.
7 Understanding NumPy Array Shapes in Python
8 Array Manipulation: A Deep Dive into Insertions and Deletions
9 How to Master Joining and Splitting Numpy Arrays: A Comprehensive Guide
10 Exploring Data with NumPy: A Guide to Statistical Functions in Python
11 Element-Wise Numerical Operations in NumPy: A Practical Guide with Examples
12 Efficient Array Sorting and File I/O Operations in NumPy: A Comprehensive Guide

原文链接:Numpy Array Object

© 版权声明
THE END
喜欢就支持一下吧
点赞5 分享
No matter when you start, it is important not to stop after the start.
无论你在什么时候开始,重要的是开始之后就不要停止
评论 抢沙发

请登录后发表评论

    暂无评论内容