In this tutorial, we’ll walk through the process of building a deep learning model for face detection using Python and TensorFlow. Face detection is a crucial component of many computer vision applications, including facial recognition, surveillance, and image understanding. We’ll leverage the power of convolutional neural networks (CNNs) and the VGG16 architecture for this task.
1. Setup and Data Collection
1.1 Install Dependencies and Setup
!pip install labelme tensorflow tensorflow-gpu opencv-python matplotlib albumentations
# Import necessary libraries import os
import time
import uuid
import cv2
Enter fullscreen mode Exit fullscreen mode
1.2 Collect Images Using OpenCV
IMAGES_PATH = os.path.join('data', 'images')
number_images = 30
cap = cv2.VideoCapture(1)
for imgnum in range(number_images):
print('Collecting image {}'.format(imgnum))
ret, frame = cap.read()
imgname = os.path.join(IMAGES_PATH, f'{str(uuid.uuid1())}.jpg')
cv2.imwrite(imgname, frame)
cv2.imshow('frame', frame)
time.sleep(0.5)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Enter fullscreen mode Exit fullscreen mode
1.3 Annotate Images with LabelMe
!labelme
Enter fullscreen mode Exit fullscreen mode
2. Review Dataset and Build Image Loading Function
2.1 Import TF and Dependencies
import tensorflow as tf
import json
import numpy as np
from matplotlib import pyplot as plt
Enter fullscreen mode Exit fullscreen mode
2.2 Limit GPU Memory Growth
# Avoid OOM errors by setting GPU Memory Consumption Growth gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
tf.config.list_physical_devices('GPU')
Enter fullscreen mode Exit fullscreen mode
2.3 Load Image into TF Data Pipeline
images = tf.data.Dataset.list_files('data\\images\\*.jpg')
def load_image(x):
byte_img = tf.io.read_file(x)
img = tf.io.decode_jpeg(byte_img)
return img
images = images.map(load_image)
Enter fullscreen mode Exit fullscreen mode
2.4 View Raw Images with Matplotlib
image_generator = images.batch(4).as_numpy_iterator()
plot_images = image_generator.next()
fig, ax = plt.subplots(ncols=4, figsize=(20,20))
for idx, image in enumerate(plot_images):
ax[idx].imshow(image)
plt.show()
Enter fullscreen mode Exit fullscreen mode
3. Partition Unaugmented Data
3.1 MANUALLY SPLT DATA INTO TRAIN TEST AND VAL
90 * 0.7 # 63 to train
90 * 0.15 # 14 and 13 to test and val
3.2 Move the Matching Labels
for folder in ['train', 'test', 'val']:
for file in os.listdir(os.path.join('data', folder, 'images')):
filename = file.split('.')[0] + '.json'
existing_filepath = os.path.join('data', 'labels', filename)
if os.path.exists(existing_filepath):
new_filepath = os.path.join('data', folder, 'labels', filename)
os.replace(existing_filepath, new_filepath)
Enter fullscreen mode Exit fullscreen mode
Stay tuned for the next steps in the upcoming sections of this tutorial!
原文链接:Building a Deep Face Detection Model with Python and TensorFlow (Part 1)
暂无评论内容