I would like to get some critical thoughts about a Psuedocode that I have created lately. Any thoughts?
`
DEFINE CLASS GBDTClassifier(GBDTEstimator):
DEFINE FUNCTION calc_grad(self, y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:// (reference) regression_loss.hSET y_pred_prob TO 1.0 / (1.0 + np.exp(-y_pred))SET eps TO 1e-16SET grad TO y_pred_prob - y_trueSET hess TO np.maximum(y_pred_prob * (1.0 - y_pred_prob), eps)RETURN grad, hessDEFINE FUNCTION predict_proba(self, x: np.ndarray) -> np.ndarray:// apply sigmoidRETURN 1.0 / (1.0 + np.exp(-self.predict(x)))DEFINE FUNCTION calc_grad(self, y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: // (reference) regression_loss.h SET y_pred_prob TO 1.0 / (1.0 + np.exp(-y_pred)) SET eps TO 1e-16 SET grad TO y_pred_prob - y_true SET hess TO np.maximum(y_pred_prob * (1.0 - y_pred_prob), eps) RETURN grad, hess DEFINE FUNCTION predict_proba(self, x: np.ndarray) -> np.ndarray: // apply sigmoid RETURN 1.0 / (1.0 + np.exp(-self.predict(x)))DEFINE FUNCTION calc_grad(self, y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: // (reference) regression_loss.h SET y_pred_prob TO 1.0 / (1.0 + np.exp(-y_pred)) SET eps TO 1e-16 SET grad TO y_pred_prob - y_true SET hess TO np.maximum(y_pred_prob * (1.0 - y_pred_prob), eps) RETURN grad, hess DEFINE FUNCTION predict_proba(self, x: np.ndarray) -> np.ndarray: // apply sigmoid RETURN 1.0 / (1.0 + np.exp(-self.predict(x)))
Enter fullscreen mode Exit fullscreen mode
`
© 版权声明
THE END
暂无评论内容