Python Pseudocode Critique

I would like to get some critical thoughts about a Psuedocode that I have created lately. Any thoughts?

`
DEFINE CLASS GBDTClassifier(GBDTEstimator):

DEFINE FUNCTION calc_grad(self, y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
// (reference) regression_loss.h
SET y_pred_prob TO 1.0 / (1.0 + np.exp(-y_pred))
SET eps TO 1e-16
SET grad TO y_pred_prob - y_true
SET hess TO np.maximum(y_pred_prob * (1.0 - y_pred_prob), eps)
RETURN grad, hess
DEFINE FUNCTION predict_proba(self, x: np.ndarray) -> np.ndarray:
// apply sigmoid
RETURN 1.0 / (1.0 + np.exp(-self.predict(x)))
DEFINE FUNCTION calc_grad(self, y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:

    // (reference) regression_loss.h

    SET y_pred_prob TO 1.0 / (1.0 + np.exp(-y_pred))

    SET eps TO 1e-16

    SET grad TO y_pred_prob - y_true

    SET hess TO np.maximum(y_pred_prob * (1.0 - y_pred_prob), eps)

    RETURN grad, hess

DEFINE FUNCTION predict_proba(self, x: np.ndarray) -> np.ndarray:

    // apply sigmoid

    RETURN 1.0 / (1.0 + np.exp(-self.predict(x)))
DEFINE FUNCTION calc_grad(self, y_true: np.ndarray, y_pred: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: // (reference) regression_loss.h SET y_pred_prob TO 1.0 / (1.0 + np.exp(-y_pred)) SET eps TO 1e-16 SET grad TO y_pred_prob - y_true SET hess TO np.maximum(y_pred_prob * (1.0 - y_pred_prob), eps) RETURN grad, hess DEFINE FUNCTION predict_proba(self, x: np.ndarray) -> np.ndarray: // apply sigmoid RETURN 1.0 / (1.0 + np.exp(-self.predict(x)))

Enter fullscreen mode Exit fullscreen mode

`

原文链接:Python Pseudocode Critique

© 版权声明
THE END
喜欢就支持一下吧
点赞14 分享
I only wish to face the sea, with spring flowers blossoming.
我只愿面朝大海,春暖花开
评论 抢沙发

请登录后发表评论

    暂无评论内容