Twitter historic data scrapping with tweepy.

Getting tweets and tweets data (dates, like_count, retweets) etc from Twitter is easy as logging into the micro-blogging platform and taking any tweet you want from any publicly available account. This makes sense if one is only interested in a tweet or at most less than 10 tweets from a single account. it becomes a hassle when you need to fetch tweets from multiple users or a significant number of tweets.

Twitter provides a way to do this and more with their set of APIs.

To get historic data dated way back, you would need an academic access to the twitter API with proof that you’re actually an academician at the time and a brief overview of the work you’re doing with the data gathered.

Getting access to the API service is the straightforward part. After the access has been granted, how to fetch and maybe store such data in a way that twitter doesn’t see your requests as spam due to the limits they have on the number of results you get per requests can be quite challenging.

This article will focus on fetching large data continuously while avoiding API rate limit.

TLDR;
here’s the code below.

https://github.com/waleCloud/me/blob/91baedc52e5f65002bba01cf2bc062e9e9f1ff88/content/blog/tweepy-fetch-historical-tweet-stream/fetch_tweets.ipynb

  • Setup Twitter Developer Account
  • Create an APP and choose Academic Research Continue to follow the twitter verification steps and approval.

Finally once approval has been granted, it times to begin fetching tweets as far back as you need and the volume, lets get started.

Before we begin, let setup Python and Tweepy installed with Pip.

  • pip install tweepy

  • Next is to get a bearer token from Twitter on the app you’ve been granted approval on.

  • Let’s connect to Twitter service with the token provided;
<span>import</span> <span>tweepy</span>
<span>def</span> <span>authenticate</span><span>():</span>
<span>BEARER_TOKEN</span> <span>=</span> <span>'</span><span>Put your bearer token here</span><span>'</span>
<span># attempt authentication </span> <span>try</span><span>:</span>
<span>print</span><span>(</span><span>"</span><span>Authenticating...</span><span>"</span><span>)</span>
<span># create Client object </span> <span>client</span> <span>=</span> <span>tweepy</span><span>.</span><span>Client</span><span>(</span><span>bearer_token</span><span>=</span><span>BEARER_TOKEN</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>API value:.... </span><span>"</span><span>,</span> <span>client</span><span>)</span>
<span># return client object </span> <span>return</span> <span>client</span>
<span>except</span> <span>Exception</span> <span>as</span> <span>e</span><span>:</span>
<span>print</span><span>(</span><span>"</span><span>Error: Authentication Failed</span><span>"</span><span>,</span> <span>e</span><span>)</span>
<span>import</span> <span>tweepy</span>

<span>def</span> <span>authenticate</span><span>():</span>
  <span>BEARER_TOKEN</span> <span>=</span> <span>'</span><span>Put your bearer token here</span><span>'</span>
  <span># attempt authentication </span>  <span>try</span><span>:</span>
    <span>print</span><span>(</span><span>"</span><span>Authenticating...</span><span>"</span><span>)</span>
    <span># create Client object </span>    <span>client</span> <span>=</span> <span>tweepy</span><span>.</span><span>Client</span><span>(</span><span>bearer_token</span><span>=</span><span>BEARER_TOKEN</span><span>)</span>
    <span>print</span><span>(</span><span>"</span><span>API value:.... </span><span>"</span><span>,</span> <span>client</span><span>)</span>
    <span># return client object </span>    <span>return</span> <span>client</span>
  <span>except</span> <span>Exception</span> <span>as</span> <span>e</span><span>:</span>
    <span>print</span><span>(</span><span>"</span><span>Error: Authentication Failed</span><span>"</span><span>,</span> <span>e</span><span>)</span>
import tweepy def authenticate(): BEARER_TOKEN = 'Put your bearer token here' # attempt authentication try: print("Authenticating...") # create Client object client = tweepy.Client(bearer_token=BEARER_TOKEN) print("API value:.... ", client) # return client object return client except Exception as e: print("Error: Authentication Failed", e)

Enter fullscreen mode Exit fullscreen mode

The above function when called will return the API client if the token provided is correct or prints out an error message.

API = authenticate()

Assuming everything goes well, the API can now be used to access Twitter’s data.

  • Lets create a function to search for tweets using the search_all_tweets method.
<span>def</span> <span>get_tweets</span><span>(</span><span>query</span><span>,</span> <span>start_time</span><span>,</span> <span>end_time</span><span>,</span> <span>next_token</span><span>):</span>
<span># empty list to store parsed tweets </span> <span>tweets</span> <span>=</span> <span>[]</span>
<span>expansions</span> <span>=</span> <span>[</span><span>'</span><span>author_id,in_reply_to_user_id,geo.place_id</span><span>'</span><span>]</span>
<span>tweet_fields</span> <span>=</span> <span>[</span><span>'</span><span>id,text,author_id,in_reply_to_user_id,geo,conversation_id,created_at,lang,public_metrics,referenced_tweets,reply_settings,source</span><span>'</span><span>]</span>
<span>user_fields</span> <span>=</span> <span>[</span><span>'</span><span>id,name,username,created_at,description,public_metrics,verified</span><span>'</span><span>]</span>
<span>place_fields</span> <span>=</span> <span>[</span><span>'</span><span>full_name,id,country,country_code,geo,name,place_type</span><span>'</span><span>]</span>
<span>try</span><span>:</span>
<span># call twitter api to fetch tweets </span> <span>fetched_tweets</span> <span>=</span> <span>API</span><span>.</span><span>search_all_tweets</span><span>(</span><span>query</span><span>,</span>
<span>end_time</span><span>=</span><span>end_time</span><span>,</span>
<span>start_time</span><span>=</span><span>start_time</span><span>,</span>
<span>expansions</span><span>=</span><span>expansions</span><span>,</span>
<span>tweet_fields</span><span>=</span><span>tweet_fields</span><span>,</span>
<span>place_fields</span><span>=</span><span>place_fields</span><span>,</span>
<span>user_fields</span><span>=</span><span>user_fields</span><span>,</span>
<span>next_token</span><span>=</span><span>next_token</span>
<span>)</span>
<span>return</span> <span>fetched_tweets</span>
<span>except</span> <span>Exception</span> <span>as</span> <span>e</span><span>:</span>
<span>print</span><span>(</span><span>"</span><span>Error getting tweets</span><span>"</span><span>,</span> <span>e</span><span>)</span>
<span>def</span> <span>get_tweets</span><span>(</span><span>query</span><span>,</span> <span>start_time</span><span>,</span> <span>end_time</span><span>,</span> <span>next_token</span><span>):</span>

  <span># empty list to store parsed tweets </span>  <span>tweets</span> <span>=</span> <span>[]</span>

  <span>expansions</span> <span>=</span> <span>[</span><span>'</span><span>author_id,in_reply_to_user_id,geo.place_id</span><span>'</span><span>]</span>
  <span>tweet_fields</span> <span>=</span> <span>[</span><span>'</span><span>id,text,author_id,in_reply_to_user_id,geo,conversation_id,created_at,lang,public_metrics,referenced_tweets,reply_settings,source</span><span>'</span><span>]</span>
  <span>user_fields</span> <span>=</span>  <span>[</span><span>'</span><span>id,name,username,created_at,description,public_metrics,verified</span><span>'</span><span>]</span>
  <span>place_fields</span> <span>=</span> <span>[</span><span>'</span><span>full_name,id,country,country_code,geo,name,place_type</span><span>'</span><span>]</span>
  <span>try</span><span>:</span>
    <span># call twitter api to fetch tweets </span>    <span>fetched_tweets</span> <span>=</span> <span>API</span><span>.</span><span>search_all_tweets</span><span>(</span><span>query</span><span>,</span>
      <span>end_time</span><span>=</span><span>end_time</span><span>,</span>
      <span>start_time</span><span>=</span><span>start_time</span><span>,</span>
      <span>expansions</span><span>=</span><span>expansions</span><span>,</span>
      <span>tweet_fields</span><span>=</span><span>tweet_fields</span><span>,</span>
      <span>place_fields</span><span>=</span><span>place_fields</span><span>,</span>
      <span>user_fields</span><span>=</span><span>user_fields</span><span>,</span>
      <span>next_token</span><span>=</span><span>next_token</span>
    <span>)</span>

    <span>return</span> <span>fetched_tweets</span>

  <span>except</span> <span>Exception</span> <span>as</span> <span>e</span><span>:</span>
    <span>print</span><span>(</span><span>"</span><span>Error getting tweets</span><span>"</span><span>,</span> <span>e</span><span>)</span>
def get_tweets(query, start_time, end_time, next_token): # empty list to store parsed tweets tweets = [] expansions = ['author_id,in_reply_to_user_id,geo.place_id'] tweet_fields = ['id,text,author_id,in_reply_to_user_id,geo,conversation_id,created_at,lang,public_metrics,referenced_tweets,reply_settings,source'] user_fields = ['id,name,username,created_at,description,public_metrics,verified'] place_fields = ['full_name,id,country,country_code,geo,name,place_type'] try: # call twitter api to fetch tweets fetched_tweets = API.search_all_tweets(query, end_time=end_time, start_time=start_time, expansions=expansions, tweet_fields=tweet_fields, place_fields=place_fields, user_fields=user_fields, next_token=next_token ) return fetched_tweets except Exception as e: print("Error getting tweets", e)

Enter fullscreen mode Exit fullscreen mode

The get_tweets function takes 4 parameters which includes the search query, start_time date to begin searching from, end_time end date of search, next_token a token that will be sent from twitter when the result is large and can only return a distinct number per request, we will be using this token to make subsequent call to this function. Imagine the next_token as some form of pagination to the next page, in this case the next set of results until it gets to the end of the list.

test out the search to confirm it works

<span>result</span> <span>=</span> <span>get_tweets</span><span>(</span><span>'</span><span>elon musk</span><span>'</span><span>,</span> <span>'</span><span>2022-10-01T00:00:01Z</span><span>'</span><span>,</span> <span>'</span><span>2022-11-01T00:00:01Z</span><span>'</span><span>,</span><span>next_token</span><span>=</span><span>None</span><span>)</span>
<span>print</span><span>(</span><span>result</span><span>)</span>
<span>result</span> <span>=</span> <span>get_tweets</span><span>(</span><span>'</span><span>elon musk</span><span>'</span><span>,</span> <span>'</span><span>2022-10-01T00:00:01Z</span><span>'</span><span>,</span> <span>'</span><span>2022-11-01T00:00:01Z</span><span>'</span><span>,</span><span>next_token</span><span>=</span><span>None</span><span>)</span>

<span>print</span><span>(</span><span>result</span><span>)</span>
result = get_tweets('elon musk', '2022-10-01T00:00:01Z', '2022-11-01T00:00:01Z',next_token=None) print(result)

Enter fullscreen mode Exit fullscreen mode

Since we want to have records of the tweets stored for processing further down the line, let’s create a method to store the tweets in a csv file.

For this, we will need the pandas library,csv and time, import them as required.

<span>import</span> <span>pandas</span> <span>as</span> <span>pd</span>
<span>import</span> <span>csv</span>
<span>import</span> <span>time</span>
<span>def</span> <span>append_to_csv</span><span>(</span><span>result_set</span><span>,</span> <span>file_name</span><span>):</span>
<span># A counter variable </span> <span>counter</span> <span>=</span> <span>0</span>
<span># Open OR create the target CSV file </span> <span>csv_file</span> <span>=</span> <span>open</span><span>(</span><span>file_name</span><span>,</span> <span>"</span><span>a</span><span>"</span><span>,</span> <span>newline</span><span>=</span><span>""</span><span>,</span> <span>encoding</span><span>=</span><span>'</span><span>utf-8</span><span>'</span><span>)</span>
<span>csv_writer</span> <span>=</span> <span>csv</span><span>.</span><span>writer</span><span>(</span><span>csv_file</span><span>)</span>
<span># Loop through each tweet </span> <span>for</span> <span>tweet</span> <span>in</span> <span>result_set</span><span>.</span><span>data</span><span>:</span>
<span># We will create a variable for each item since some of the keys might not exist for some tweets </span> <span># So we will account for that </span>
<span>author_id</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>author_id</span><span>'</span><span>]</span>
<span>created_at</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>created_at</span><span>'</span><span>]</span>
<span>if </span><span>(</span><span>'</span><span>geo</span><span>'</span> <span>in</span> <span>tweet</span><span>):</span>
<span>geo</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>geo</span><span>'</span><span>][</span><span>'</span><span>place_id</span><span>'</span><span>]</span>
<span>else</span><span>:</span>
<span>geo</span> <span>=</span> <span>"</span><span> </span><span>"</span>
<span>tweet_id</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>id</span><span>'</span><span>]</span>
<span>lang</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>lang</span><span>'</span><span>]</span>
<span>retweet_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>retweet_count</span><span>'</span><span>]</span>
<span>reply_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>reply_count</span><span>'</span><span>]</span>
<span>like_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>like_count</span><span>'</span><span>]</span>
<span>quote_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>quote_count</span><span>'</span><span>]</span>
<span>source</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>source</span><span>'</span><span>]</span>
<span>text</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>text</span><span>'</span><span>]</span>
<span># Assemble all data in a list </span> <span>res</span> <span>=</span> <span>[</span><span>author_id</span><span>,</span> <span>created_at</span><span>,</span> <span>geo</span><span>,</span> <span>tweet_id</span><span>,</span> <span>lang</span><span>,</span> <span>like_count</span><span>,</span> <span>quote_count</span><span>,</span> <span>reply_count</span><span>,</span> <span>retweet_count</span><span>,</span> <span>source</span><span>,</span> <span>text</span><span>]</span>
<span># Append the result to the CSV file </span> <span>csv_writer</span><span>.</span><span>writerow</span><span>(</span><span>res</span><span>)</span>
<span>counter</span> <span>+=</span> <span>1</span>
<span># When done, close the CSV file </span> <span>csv_file</span><span>.</span><span>close</span><span>()</span>
<span># Print the number of tweets for this iteration </span> <span>print</span><span>(</span><span>"</span><span># of Tweets added from this response: </span><span>"</span><span>,</span> <span>counter</span><span>)</span>
<span>import</span> <span>pandas</span> <span>as</span> <span>pd</span>
<span>import</span> <span>csv</span>
<span>import</span> <span>time</span>

<span>def</span> <span>append_to_csv</span><span>(</span><span>result_set</span><span>,</span> <span>file_name</span><span>):</span>

    <span># A counter variable </span>    <span>counter</span> <span>=</span> <span>0</span>
    <span># Open OR create the target CSV file </span>    <span>csv_file</span> <span>=</span> <span>open</span><span>(</span><span>file_name</span><span>,</span> <span>"</span><span>a</span><span>"</span><span>,</span> <span>newline</span><span>=</span><span>""</span><span>,</span> <span>encoding</span><span>=</span><span>'</span><span>utf-8</span><span>'</span><span>)</span>
    <span>csv_writer</span> <span>=</span> <span>csv</span><span>.</span><span>writer</span><span>(</span><span>csv_file</span><span>)</span>

    <span># Loop through each tweet </span>    <span>for</span> <span>tweet</span> <span>in</span> <span>result_set</span><span>.</span><span>data</span><span>:</span>
        <span># We will create a variable for each item since some of the keys might not exist for some tweets </span>        <span># So we will account for that </span>
        <span>author_id</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>author_id</span><span>'</span><span>]</span>
        <span>created_at</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>created_at</span><span>'</span><span>]</span>
        <span>if </span><span>(</span><span>'</span><span>geo</span><span>'</span> <span>in</span> <span>tweet</span><span>):</span>   
            <span>geo</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>geo</span><span>'</span><span>][</span><span>'</span><span>place_id</span><span>'</span><span>]</span>
        <span>else</span><span>:</span>
            <span>geo</span> <span>=</span> <span>"</span><span> </span><span>"</span>
        <span>tweet_id</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>id</span><span>'</span><span>]</span>
        <span>lang</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>lang</span><span>'</span><span>]</span>
        <span>retweet_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>retweet_count</span><span>'</span><span>]</span>
        <span>reply_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>reply_count</span><span>'</span><span>]</span>
        <span>like_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>like_count</span><span>'</span><span>]</span>
        <span>quote_count</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>public_metrics</span><span>'</span><span>][</span><span>'</span><span>quote_count</span><span>'</span><span>]</span>
        <span>source</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>source</span><span>'</span><span>]</span>
        <span>text</span> <span>=</span> <span>tweet</span><span>[</span><span>'</span><span>text</span><span>'</span><span>]</span>

        <span># Assemble all data in a list </span>        <span>res</span> <span>=</span> <span>[</span><span>author_id</span><span>,</span> <span>created_at</span><span>,</span> <span>geo</span><span>,</span> <span>tweet_id</span><span>,</span> <span>lang</span><span>,</span> <span>like_count</span><span>,</span> <span>quote_count</span><span>,</span> <span>reply_count</span><span>,</span> <span>retweet_count</span><span>,</span> <span>source</span><span>,</span> <span>text</span><span>]</span>        

        <span># Append the result to the CSV file </span>        <span>csv_writer</span><span>.</span><span>writerow</span><span>(</span><span>res</span><span>)</span>
        <span>counter</span> <span>+=</span> <span>1</span>

    <span># When done, close the CSV file </span>    <span>csv_file</span><span>.</span><span>close</span><span>()</span>

    <span># Print the number of tweets for this iteration </span>    <span>print</span><span>(</span><span>"</span><span># of Tweets added from this response: </span><span>"</span><span>,</span> <span>counter</span><span>)</span> 
import pandas as pd import csv import time def append_to_csv(result_set, file_name): # A counter variable counter = 0 # Open OR create the target CSV file csv_file = open(file_name, "a", newline="", encoding='utf-8') csv_writer = csv.writer(csv_file) # Loop through each tweet for tweet in result_set.data: # We will create a variable for each item since some of the keys might not exist for some tweets # So we will account for that author_id = tweet['author_id'] created_at = tweet['created_at'] if ('geo' in tweet): geo = tweet['geo']['place_id'] else: geo = " " tweet_id = tweet['id'] lang = tweet['lang'] retweet_count = tweet['public_metrics']['retweet_count'] reply_count = tweet['public_metrics']['reply_count'] like_count = tweet['public_metrics']['like_count'] quote_count = tweet['public_metrics']['quote_count'] source = tweet['source'] text = tweet['text'] # Assemble all data in a list res = [author_id, created_at, geo, tweet_id, lang, like_count, quote_count, reply_count, retweet_count, source, text] # Append the result to the CSV file csv_writer.writerow(res) counter += 1 # When done, close the CSV file csv_file.close() # Print the number of tweets for this iteration print("# of Tweets added from this response: ", counter)

Enter fullscreen mode Exit fullscreen mode

Things are beginning to take shape, now the final piece to joining all these functions to create a stream of tweets.

<span>count</span> <span>=</span> <span>0</span> <span># Counting tweets per time period </span><span>max_count</span> <span>=</span> <span>100</span> <span># Max tweets per time period </span><span>flag</span> <span>=</span> <span>True</span>
<span>next_token</span> <span>=</span> <span>None</span>
<span>query</span> <span>=</span> <span>'</span><span>Parag Musk</span><span>'</span>
<span>start_time</span> <span>=</span> <span>'</span><span>2022-10-01T00:00:01Z</span><span>'</span>
<span>end_time</span> <span>=</span> <span>'</span><span>2022-11-01T00:00:01Z</span><span>'</span>
<span># Total number of tweets we collected from the loop # Check if flag is true </span><span>def</span> <span>run_fetch</span><span>(</span><span>flag</span><span>=</span><span>True</span><span>,</span> <span>next_token</span><span>=</span><span>None</span><span>,</span> <span>count</span><span>=</span><span>0</span><span>,</span> <span>total_tweets</span><span>=</span><span>0</span> <span>):</span>
<span>if </span><span>(</span><span>flag</span> <span>is</span> <span>not</span> <span>True</span><span>):</span>
<span>return</span>
<span>while</span> <span>flag</span><span>:</span>
<span>print</span><span>(</span><span>"</span><span>-------------------</span><span>"</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Token: </span><span>"</span><span>,</span> <span>next_token</span><span>)</span>
<span>result</span> <span>=</span> <span>get_tweets</span><span>(</span><span>query</span><span>=</span><span>query</span><span>,</span> <span>start_time</span><span>=</span><span>start_time</span><span>,</span> <span>end_time</span><span>=</span><span>end_time</span><span>,</span> <span>next_token</span><span>=</span><span>next_token</span><span>)</span> <span># get_tweet function called </span> <span>result_count</span> <span>=</span> <span>result</span><span>.</span><span>meta</span><span>[</span><span>'</span><span>result_count</span><span>'</span><span>]</span>
<span>if</span> <span>result_count</span> <span>is</span> <span>not</span> <span>None</span> <span>and</span> <span>result_count</span> <span>></span> <span>0</span><span>:</span>
<span># print("Start Date: ", start_list[i]) </span> <span>append_to_csv</span><span>(</span><span>result</span><span>,</span> <span>"</span><span>data.csv</span><span>"</span><span>)</span>
<span>count</span> <span>+=</span> <span>result_count</span>
<span>total_tweets</span> <span>+=</span> <span>result_count</span>
<span>print</span><span>(</span><span>"</span><span>Total # of Tweets added: </span><span>"</span><span>,</span> <span>total_tweets</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>-------------------</span><span>"</span><span>)</span>
<span>if</span> <span>result</span><span>.</span><span>meta</span><span>[</span><span>'</span><span>next_token</span><span>'</span><span>]:</span>
<span># Save the token to use for next call </span> <span>next_token</span> <span>=</span> <span>result</span><span>.</span><span>meta</span><span>[</span><span>'</span><span>next_token</span><span>'</span><span>]</span>
<span>print</span><span>(</span><span>"</span><span>Next Token: </span><span>"</span><span>,</span> <span>next_token</span><span>)</span>
<span>time</span><span>.</span><span>sleep</span><span>(</span><span>5</span><span>)</span>
<span>run_fetch</span><span>(</span><span>True</span><span>,</span> <span>next_token</span><span>=</span><span>next_token</span><span>,</span> <span>count</span><span>=</span><span>count</span><span>,</span> <span>total_tweets</span><span>=</span><span>total_tweets</span><span>)</span>
<span>else</span><span>:</span>
<span># Since this is the final request, turn flag to false to move to the next time period. </span> <span>flag</span> <span>=</span> <span>False</span>
<span>next_token</span> <span>=</span> <span>None</span>
<span>time</span><span>.</span><span>sleep</span><span>(</span><span>5</span><span>)</span>
<span>print</span><span>(</span><span>"</span><span>Total number of results: </span><span>"</span><span>,</span> <span>total_tweets</span><span>)</span>
<span>count</span> <span>=</span> <span>0</span> <span># Counting tweets per time period </span><span>max_count</span> <span>=</span> <span>100</span> <span># Max tweets per time period </span><span>flag</span> <span>=</span> <span>True</span>
<span>next_token</span> <span>=</span> <span>None</span>
<span>query</span> <span>=</span> <span>'</span><span>Parag Musk</span><span>'</span>
<span>start_time</span> <span>=</span> <span>'</span><span>2022-10-01T00:00:01Z</span><span>'</span>
<span>end_time</span> <span>=</span> <span>'</span><span>2022-11-01T00:00:01Z</span><span>'</span>
 <span># Total number of tweets we collected from the loop # Check if flag is true </span><span>def</span> <span>run_fetch</span><span>(</span><span>flag</span><span>=</span><span>True</span><span>,</span> <span>next_token</span><span>=</span><span>None</span><span>,</span> <span>count</span><span>=</span><span>0</span><span>,</span> <span>total_tweets</span><span>=</span><span>0</span> <span>):</span>
  <span>if </span><span>(</span><span>flag</span> <span>is</span> <span>not</span> <span>True</span><span>):</span>
    <span>return</span>
  <span>while</span> <span>flag</span><span>:</span>
    <span>print</span><span>(</span><span>"</span><span>-------------------</span><span>"</span><span>)</span>
    <span>print</span><span>(</span><span>"</span><span>Token: </span><span>"</span><span>,</span> <span>next_token</span><span>)</span>
    <span>result</span> <span>=</span> <span>get_tweets</span><span>(</span><span>query</span><span>=</span><span>query</span><span>,</span> <span>start_time</span><span>=</span><span>start_time</span><span>,</span> <span>end_time</span><span>=</span><span>end_time</span><span>,</span> <span>next_token</span><span>=</span><span>next_token</span><span>)</span> <span># get_tweet function called </span>    <span>result_count</span> <span>=</span> <span>result</span><span>.</span><span>meta</span><span>[</span><span>'</span><span>result_count</span><span>'</span><span>]</span>
    <span>if</span> <span>result_count</span> <span>is</span> <span>not</span> <span>None</span> <span>and</span> <span>result_count</span> <span>></span> <span>0</span><span>:</span>
      <span># print("Start Date: ", start_list[i]) </span>      <span>append_to_csv</span><span>(</span><span>result</span><span>,</span> <span>"</span><span>data.csv</span><span>"</span><span>)</span>
      <span>count</span> <span>+=</span> <span>result_count</span>
      <span>total_tweets</span> <span>+=</span> <span>result_count</span>
      <span>print</span><span>(</span><span>"</span><span>Total # of Tweets added: </span><span>"</span><span>,</span> <span>total_tweets</span><span>)</span>
      <span>print</span><span>(</span><span>"</span><span>-------------------</span><span>"</span><span>)</span>
      <span>if</span> <span>result</span><span>.</span><span>meta</span><span>[</span><span>'</span><span>next_token</span><span>'</span><span>]:</span>
        <span># Save the token to use for next call </span>        <span>next_token</span> <span>=</span> <span>result</span><span>.</span><span>meta</span><span>[</span><span>'</span><span>next_token</span><span>'</span><span>]</span>
        <span>print</span><span>(</span><span>"</span><span>Next Token: </span><span>"</span><span>,</span> <span>next_token</span><span>)</span>
        <span>time</span><span>.</span><span>sleep</span><span>(</span><span>5</span><span>)</span>
        <span>run_fetch</span><span>(</span><span>True</span><span>,</span> <span>next_token</span><span>=</span><span>next_token</span><span>,</span> <span>count</span><span>=</span><span>count</span><span>,</span> <span>total_tweets</span><span>=</span><span>total_tweets</span><span>)</span>
      <span>else</span><span>:</span>
        <span># Since this is the final request, turn flag to false to move to the next time period. </span>        <span>flag</span> <span>=</span> <span>False</span>
        <span>next_token</span> <span>=</span> <span>None</span>
    <span>time</span><span>.</span><span>sleep</span><span>(</span><span>5</span><span>)</span>
  <span>print</span><span>(</span><span>"</span><span>Total number of results: </span><span>"</span><span>,</span> <span>total_tweets</span><span>)</span>
count = 0 # Counting tweets per time period max_count = 100 # Max tweets per time period flag = True next_token = None query = 'Parag Musk' start_time = '2022-10-01T00:00:01Z' end_time = '2022-11-01T00:00:01Z' # Total number of tweets we collected from the loop # Check if flag is true def run_fetch(flag=True, next_token=None, count=0, total_tweets=0 ): if (flag is not True): return while flag: print("-------------------") print("Token: ", next_token) result = get_tweets(query=query, start_time=start_time, end_time=end_time, next_token=next_token) # get_tweet function called result_count = result.meta['result_count'] if result_count is not None and result_count > 0: # print("Start Date: ", start_list[i]) append_to_csv(result, "data.csv") count += result_count total_tweets += result_count print("Total # of Tweets added: ", total_tweets) print("-------------------") if result.meta['next_token']: # Save the token to use for next call next_token = result.meta['next_token'] print("Next Token: ", next_token) time.sleep(5) run_fetch(True, next_token=next_token, count=count, total_tweets=total_tweets) else: # Since this is the final request, turn flag to false to move to the next time period. flag = False next_token = None time.sleep(5) print("Total number of results: ", total_tweets)

Enter fullscreen mode Exit fullscreen mode

The above code runs recursively until there’s no Next_token which stops the search, a sleep for 5 milliseconds to allow guard against rate limit before the next run_check.

With that we can now begin the stream by running run_fetch().

With this approach, you can get as many tweets as you want continuously, one caveat is your machine needs to be running and not go into hibernate/sleep mode else the process breaks.

One way I can quickly think of to mitigate this is to run this over the cloud on something like google colab, that way you don’t have to worry about your machine sleeping as truly its google’s machine that carry’s all the burden .

I hope this helps someone.

原文链接:Twitter historic data scrapping with tweepy.

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享
If you never chase your dream, you will never catch them.
若不去追逐梦想,你将永远无法抓住梦想
评论 抢沙发

请登录后发表评论

    暂无评论内容