Hi,devs.
I have started a Journey called Striver’s SDE Sheet Journey and in this journey, I have successfully solved the first problem #1 from the SDE Sheet, now i am going to tackle the second one.
#2 Pascal’s Triangle
In this problem we have given a Integer number or numRows
and we need to return first numRows
of pascal’s triangle as a 2D array.
Input: numRows = 5
Output: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
Enter fullscreen mode Exit fullscreen mode
as you can see in the fig,
-
in Pascal’s Triangle, each number is the sum of two numbers directly above it.
-
each row’s first & last value is 1.
after getting some data points of the Pascal Triangle pattern. I got an idea to tackle this problem.
let’s discuss my idea step by step.
my approach
1. initialize a numRows
size of the array pascalTriangle
that holds a list of Integer row
.
2. run a loop from numRow = 1
to numRows
.
2.1 inside a loop we again create an array
row
with a size of iteration number ornumRow
and fill it with 1’s.
e.g.numRow = 3
thenrow = [1,1,1]
2.2 run a loop from
i = 1
tonumRow - 1
.2.2.1 compute the row’s value from previous row values. (we can get the previous row from
pascalTriangle
array)
e.g.value = preRow[i-1] + preRow[i]
2.2.1 set the computed value to the
row
array at index i.2.3 add
row
array topascalTriangle
array.
3. return pascalTriangle
array.
4. end.
Let’s do a Dry Run this approach on a simple example.
Input: numRows = 5
expected Output: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
Enter fullscreen mode Exit fullscreen mode
step-1 initialized an array of size numRows
called pascalTriangle = [[],[],[],[],[]]
.
pascalTriangle = [[],[],[],[],[]]
Enter fullscreen mode Exit fullscreen mode
step-2 run a loop from numRow = 1
to numRows
.
at numRow = 1
1. initialized an array size of
numRow
and fill with 1’s.
row = [1]
2. run a loop from
i = 1
tonumRow - 1
.at i = 1 => ( 1 < 1-1 ) loop condition does not satisfy the running criteria so that this loop does not get executed.
3. add
row
array topascalTriangle
array.
pascalTriangle = [[1],[],[],[],[]]
Enter fullscreen mode Exit fullscreen mode
at numRow = 2
1. initialized an array size of
numRow
and fill with 1’s.
row = [1,1]
2. run loop.at i = 1 => ( 1 < 2-1 ) loop condition does not satisfy the running criteria
3. add
row
array topascalTriangle
array.
pascalTriangle = [[1],[1,1],[],[],[]]
Enter fullscreen mode Exit fullscreen mode
at numRow = 3
1. initialized an array size of
numRow
and fill with 1’s e.g.row = [1,1,1]
2. run loop.at i = 1 => ( 1 < 3-1 ) loop condition satisfy the running criteria then,
1. calculate the value from the previous row.
value = priRow[1-1] + preRow[1]
=>2 = 1 + 1
2. setvalue
torow
array at 1 index.
row = [1,2,1]
at i = 2 => ( 2 < 3-1 ) loop condition does not satisfy the running criteria then loop end.
3. add to
row = [1,2,1]
topascalTriangle
array.
pascalTriangle = [[1],[1,1],[1,2,1],[],[]]
Enter fullscreen mode Exit fullscreen mode
at numRow = 4
1. initialized an array size of
numRow
and fill with 1’s e.g.row = [1,1,1,1]
2. run loopat i = 1 => ( 1 < 4-1 ) loop condition satisfy the running criteria then,
1. calculate the value from the previous row.
value = priRow[1-1] + preRow[1]
=>3 = 1 + 2
2. setvalue
torow
array at 1 index.
setvalue
torow
array at i index,row = [1,3,1,1]
at i = 2 => ( 2 < 4-1 ) loop condition satisfy the running criteria then,
1. calculate the value from the previous row.
value = priRow[2-1] + preRow[2]
=>3 = 2 + 1
2. setvalue
torow
array at 1 index.
row = [1,3,3,1]
at i = 3 => ( 3 < 3-1 ) loop condition does not satisfy the running criteria then loop end.
3. add to
row = [1,3,3,1]
topascalTriangle
array.
pascalTriangle = [[1],[1,1],[1,2,1],[1,3,3,1],[]]
Enter fullscreen mode Exit fullscreen mode
after the last iteration. we got output as we expected.
pascalTriangle = [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
Enter fullscreen mode Exit fullscreen mode
Java
import java.util.ArrayList;
class Solution {
public List<List<Integer>> generate(int numRows) {
// step-1 initialized an array that holds a list of Integer
List<List<Integer>> pascalTriangle = new ArrayList<List<Integer>>(numRows);
// step-2 run a loop from 1 to numRow
for(int numRow=1; numRow<=numRows;numRow++){
// step-2.1 initialized a array & filled with 1's
List<Integer> row = new ArrayList<Integer>(Collections.nCopies(numRow,1));
// step2.2 run a loop from 1 to numRow -1
for(int i=1;i<numRow-1;i++){
// get previous row array from pascalTriangle array
List<Integer> preRow = pascalTriangle.get(numRow-2);
// step-2.2.1 calculate value from previous row array
int value = preRow.get(i-1) + preRow.get(i);
// step-2.2.2 set value at index i
row.set(i,value);
}
// step-2.3 add the row array to pascalTriangle array
pascalTriangle.add(row);
}
// step-3 return the pascalTriangle array
return pascalTriangle;
}
}
// end
Enter fullscreen mode Exit fullscreen mode
Other Approaches
Algo #1
in this approach we can compute the Triangle’s row array by adding 1 at index 0.
example:-
[1,1]
add 1 at 0 index -> [1,1,1] -> [1,2,1]
[1,2,1]
add 1 at 0 index -> [1,1,2,1] -> [1,3,2,1]
-> [1,1,2,1] -> [1,3,3,1]
[1,3,3,1]
add 1 at 0 index -> [1,1,3,3,1] -> [1,4,3,3,1]
-> [1,4,3,3,1] -> [1,4,6,3,1]
-> [1,4,6,3,1] -> [1,4,6,4,1]
let’s understand this approach step by step.
step-1. initialize two arrays pascalTri
and row
.
step-2. run a loop from numRow = 1
to numRows
.
1. add 1 to
row
array at index 0.
2. run a loop fromi = 1
torow.size -1
.1. update
row
array value.
e.g.row.set(i,row.get(i) + row.get(i+1))
3. add a copy of the
row
array topascalTri
array.
step-3 return pascalTri
array.
step-4 end.
Java
public class Solution {
public List<List<Integer>> generate(int numRows)
{
// initialize two Lists
List<List<Integer>> pascalTri = new ArrayList<List<Integer>>();
ArrayList<Integer> row = new ArrayList<Integer>();
// run 1 to numRows
for(int numRow=1;numRow<=numRows;numRow++)
{
// add 1 at index 0
row.add(0, 1);
// update row value
for(int i=1;i<row.size()-1;i++)
row.set(i, row.get(i)+row.get(i+1));
// add a copy of row instance
pascalTri.add(new ArrayList<Integer>(row));
}
return pascalTri;
}
}
Enter fullscreen mode Exit fullscreen mode
Time Complexity
we are initializing a row array and traversing the row’s element for updating the cell.
so that time complexity : O(numRows*numRows)
Space Complexity
so we are initilaizing a 2D matrix (pascalTri
and row
).
then space complexity : O(pascalTri*row)
Thank you for reading this article. if you have any query please share them in the comment box
暂无评论内容