When working on a high throughput, low latency system, it’s important to measure the execution time of your code to identify bottleneck and fix them. To do so, let’s use a decorator to measure the execution time for the function it decorates.
from datetime import timedelta
from functools import wraps
from timeit import default_timer as timer
from typing import Any, Callable, Optional
def metrics(func: Optional[Callable] = None, name: Optional[str] = None, hms: Optional[bool] = False) -> Any:
"""Decorator to show execution time. :param func: Decorated function :param name: Metrics name :param hms: Show as human-readable string """
assert callable(func) or func is None
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
comment = f"Execution time of {name or fn.__name__}:"
t = timer()
result = fn(*args, **kwargs)
te = timer() - t
# Log metrics from common import log
logger = log.withPrefix('[METRICS]')
if hms:
logger.info(f"{comment} {timedelta(seconds=te)}")
else:
logger.info(f"{comment} {te:>.6f} sec")
return result
return wrapper
return decorator(func) if callable(func) else decorator
Enter fullscreen mode Exit fullscreen mode
By adding this decorator to each function, we can use the analytics from the APM to identify bottleneck and gain better visibility over the system.
Happy coding 😀
© 版权声明
THE END
暂无评论内容