Pre-requisites:
- Python 3 or higher.
- Flask
- Html and CSS
- Editor – VSCode / PyCharm
Part 1: Dependencies Installation
Open terminal and install the following dependencies.
Commands :
pip install flask
pip install SpeechRecognition
Part 2: Setting-Up Project
-
Now create a folder give it anyname. Here, I have given folder name as Flaskproject.
-
Now, open the empty folder in VSCode or PyCharm IDE(I preferred VSCode).
-
Inside the empty folder we have to create a python file (app.py), a templates directory and static directory and inside static directory create styles directory.
Part 3: Coding:
- Open the app.py file and enter the following code:
Code app.py
:
from flask import Flask, render_template , request , redirect
import speech_recognition as sr
app = Flask(__name__)
@app.route("/", methods=["GET","POST"])
def index():
transcript = ''
if request.method == "POST":
print("FORM DATA RECEIVED")
if "file" not in request.files:
return redirect(request.url)
file = request.files["file"]
if file.filename == "":
return redirect(request.url)
if file:
recognizer = sr.Recognizer()
wavfile = sr.AudioFile(file)
with wavfile as source:
data = recognizer.record(source)
transcript = recognizer.recognize_google(data, key=None)
return render_template('index.html' , transcript = transcript)
if __name__ == " main ":
app.run(debug=True, threaded=True)
Enter fullscreen mode Exit fullscreen mode
2.Create index.html file in templates directory:
Code index.html
:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>FlaskProject - AudiotoText</title>
<link rel="stylesheet" href="{{url_for('static', filename='styles/style.css')}}">
</head>
<body>
<header>FlaskCaption</header>
<div id="mainContainer">
<h2>Upload Audio File</h2>
<form method="post" enctype="multipart/form-data">
<input type="file" name="file" id="fileinput">
<br>
<input type="submit" id="submitButton" value="Process"/>
</form>
{% if transcript != "" %}
<div class="speechTranscriptContainer">
<h1>Transcripted Text</h1>
<p>{{transcript}}</p>
</div>
{% endif %}
</div>
</body>
</html>
Enter fullscreen mode Exit fullscreen mode
3.Create a styles.css file inside static/styles directory:
Code style.css
:
body{
margin: 0;
padding: 0;
background-color: aliceblue;
}
h1, p , input{
font-family: cursive;
}
header{
display: flex;
justify-content: center;
font-size: 50px;
font-family: Georgia, 'Times New Roman', Times, serif;
}
#mainContainer{
display: flex;
align-items: center;
flex-direction: column;
border-radius: 10px;
background-color: white;
margin-top: 15%;
}
#submitButton{
background-color: #0191FE;
color: white;
border: none;
border-radius: 10px;
margin-top: 10px;
margin-left: 30%;
padding: 10px;
}
#submitButton:hover{
cursor: pointer;
}
Enter fullscreen mode Exit fullscreen mode
Part 4: Execution
To run the flask webapp we need one command
flask run
Enter fullscreen mode Exit fullscreen mode
This command will run our flask webapp locally on port number 5000 by default.
Part 5: Output
Some Pros of the Project:
- The accuracy of converting the Audio(Speech) to convert text is almost 92%
Some Cons of the Project:
- The project only take .wav file as a input.
Resources
Github Repository
Flask Doc
SpeechRecognition Doc
暂无评论内容