In this tutorial, I will show you how to give a cartoon-effect to an image in Python with OpenCV.
OpenCV is an open-source python library used for computer vision and machine learning. It is mainly aimed at real-time computer vision and image processing. It is used to perform different operations on images which transform them using different techniques.
Many apps can turn your photos into cartoons, but you can do this on your own with few lines of code Python code.
This is our test image:
Let’s jump to the code.
<span>import</span> <span>numpy</span> <span>as</span> <span>np</span><span>import</span> <span>cv2</span><span>import</span> <span>numpy</span> <span>as</span> <span>np</span> <span>import</span> <span>cv2</span>import numpy as np import cv2
Enter fullscreen mode Exit fullscreen mode
after that we we read our image:
<span>filename</span> <span>=</span> <span>'</span><span>elon.jpeg</span><span>'</span><span>filename</span> <span>=</span> <span>'</span><span>elon.jpeg</span><span>'</span>filename = 'elon.jpeg'
Enter fullscreen mode Exit fullscreen mode
then we will define our resizeImage
:
<span>def</span> <span>resizeImage</span><span>(</span><span>image</span><span>):</span><span>scale_ratio</span> <span>=</span> <span>0.3</span><span>width</span> <span>=</span> <span>int</span><span>(</span><span>image</span><span>.</span><span>shape</span><span>[</span><span>1</span><span>]</span> <span>*</span> <span>scale_ratio</span><span>)</span><span>height</span> <span>=</span> <span>int</span><span>(</span><span>image</span><span>.</span><span>shape</span><span>[</span><span>0</span><span>]</span> <span>*</span> <span>scale_ratio</span><span>)</span><span>new_dimensions</span> <span>=</span> <span>(</span><span>width</span><span>,</span> <span>height</span><span>)</span><span>resized</span> <span>=</span> <span>cv2</span><span>.</span><span>resize</span><span>(</span><span>image</span><span>,</span> <span>new_dimensions</span><span>,</span> <span>interpolation</span> <span>=</span> <span>cv2</span><span>.</span><span>INTER_AREA</span><span>)</span><span>return</span> <span>resized</span><span>def</span> <span>resizeImage</span><span>(</span><span>image</span><span>):</span> <span>scale_ratio</span> <span>=</span> <span>0.3</span> <span>width</span> <span>=</span> <span>int</span><span>(</span><span>image</span><span>.</span><span>shape</span><span>[</span><span>1</span><span>]</span> <span>*</span> <span>scale_ratio</span><span>)</span> <span>height</span> <span>=</span> <span>int</span><span>(</span><span>image</span><span>.</span><span>shape</span><span>[</span><span>0</span><span>]</span> <span>*</span> <span>scale_ratio</span><span>)</span> <span>new_dimensions</span> <span>=</span> <span>(</span><span>width</span><span>,</span> <span>height</span><span>)</span> <span>resized</span> <span>=</span> <span>cv2</span><span>.</span><span>resize</span><span>(</span><span>image</span><span>,</span> <span>new_dimensions</span><span>,</span> <span>interpolation</span> <span>=</span> <span>cv2</span><span>.</span><span>INTER_AREA</span><span>)</span> <span>return</span> <span>resized</span>def resizeImage(image): scale_ratio = 0.3 width = int(image.shape[1] * scale_ratio) height = int(image.shape[0] * scale_ratio) new_dimensions = (width, height) resized = cv2.resize(image, new_dimensions, interpolation = cv2.INTER_AREA) return resized
Enter fullscreen mode Exit fullscreen mode
the we need to find contours:
<span>def</span> <span>findCountours</span><span>(</span><span>image</span><span>):</span><span>contoured_image</span> <span>=</span> <span>image</span><span>gray</span> <span>=</span> <span>cv2</span><span>.</span><span>cvtColor</span><span>(</span><span>contoured_image</span><span>,</span> <span>cv2</span><span>.</span><span>COLOR_BGR2GRAY</span><span>)</span><span>edged</span> <span>=</span> <span>cv2</span><span>.</span><span>Canny</span><span>(</span><span>gray</span><span>,</span> <span>30</span><span>,</span> <span>100</span><span>)</span><span>contours</span><span>,</span> <span>hierarchy</span> <span>=</span> <span>cv2</span><span>.</span><span>findContours</span><span>(</span><span>edged</span><span>,</span><span>cv2</span><span>.</span><span>RETR_EXTERNAL</span><span>,</span> <span>cv2</span><span>.</span><span>CHAIN_APPROX_NONE</span><span>)</span><span>cv2</span><span>.</span><span>drawContours</span><span>(</span><span>contoured_image</span><span>,</span> <span>contours</span><span>,</span> <span>contourIdx</span><span>=-</span><span>1</span><span>,</span> <span>color</span><span>=</span><span>1</span><span>,</span> <span>thickness</span><span>=</span><span>1</span><span>)</span><span>cv2</span><span>.</span><span>imshow</span><span>(</span><span>'</span><span>Image after countouring</span><span>'</span><span>,</span> <span>contoured_image</span><span>)</span><span>cv2</span><span>.</span><span>waitKey</span><span>(</span><span>0</span><span>)</span><span>cv2</span><span>.</span><span>destroyAllWindows</span><span>()</span><span>return</span> <span>contoured_image</span><span>def</span> <span>findCountours</span><span>(</span><span>image</span><span>):</span> <span>contoured_image</span> <span>=</span> <span>image</span> <span>gray</span> <span>=</span> <span>cv2</span><span>.</span><span>cvtColor</span><span>(</span><span>contoured_image</span><span>,</span> <span>cv2</span><span>.</span><span>COLOR_BGR2GRAY</span><span>)</span> <span>edged</span> <span>=</span> <span>cv2</span><span>.</span><span>Canny</span><span>(</span><span>gray</span><span>,</span> <span>30</span><span>,</span> <span>100</span><span>)</span> <span>contours</span><span>,</span> <span>hierarchy</span> <span>=</span> <span>cv2</span><span>.</span><span>findContours</span><span>(</span><span>edged</span><span>,</span> <span>cv2</span><span>.</span><span>RETR_EXTERNAL</span><span>,</span> <span>cv2</span><span>.</span><span>CHAIN_APPROX_NONE</span><span>)</span> <span>cv2</span><span>.</span><span>drawContours</span><span>(</span><span>contoured_image</span><span>,</span> <span>contours</span><span>,</span> <span>contourIdx</span><span>=-</span><span>1</span><span>,</span> <span>color</span><span>=</span><span>1</span><span>,</span> <span>thickness</span><span>=</span><span>1</span><span>)</span> <span>cv2</span><span>.</span><span>imshow</span><span>(</span><span>'</span><span>Image after countouring</span><span>'</span><span>,</span> <span>contoured_image</span><span>)</span> <span>cv2</span><span>.</span><span>waitKey</span><span>(</span><span>0</span><span>)</span> <span>cv2</span><span>.</span><span>destroyAllWindows</span><span>()</span> <span>return</span> <span>contoured_image</span>def findCountours(image): contoured_image = image gray = cv2.cvtColor(contoured_image, cv2.COLOR_BGR2GRAY) edged = cv2.Canny(gray, 30, 100) contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cv2.drawContours(contoured_image, contours, contourIdx=-1, color=1, thickness=1) cv2.imshow('Image after countouring', contoured_image) cv2.waitKey(0) cv2.destroyAllWindows() return contoured_image
Enter fullscreen mode Exit fullscreen mode
after that, we do a color quantization:
<span>def</span> <span>ColorQuantization</span><span>(</span><span>image</span><span>,</span> <span>K</span><span>=</span><span>4</span><span>):</span><span>Z</span> <span>=</span> <span>image</span><span>.</span><span>reshape</span><span>((</span><span>-</span><span>1</span><span>,</span> <span>3</span><span>))</span><span>def</span> <span>ColorQuantization</span><span>(</span><span>image</span><span>,</span> <span>K</span><span>=</span><span>4</span><span>):</span> <span>Z</span> <span>=</span> <span>image</span><span>.</span><span>reshape</span><span>((</span><span>-</span><span>1</span><span>,</span> <span>3</span><span>))</span>def ColorQuantization(image, K=4): Z = image.reshape((-1, 3))
Enter fullscreen mode Exit fullscreen mode
then we convert image to numpy float32:
<span>Z</span> <span>=</span> <span>np</span><span>.</span><span>float32</span><span>(</span><span>Z</span><span>)</span><span>Z</span> <span>=</span> <span>np</span><span>.</span><span>float32</span><span>(</span><span>Z</span><span>)</span>Z = np.float32(Z)
Enter fullscreen mode Exit fullscreen mode
also we need to define critera and apply kmeans:
<span>criteria</span> <span>=</span> <span>(</span><span>cv2</span><span>.</span><span>TERM_CRITERIA_EPS</span> <span>+</span> <span>cv2</span><span>.</span><span>TERM_CRITERIA_MAX_ITER</span><span>,</span> <span>10000</span><span>,</span> <span>0.0001</span><span>)</span><span>compactness</span><span>,</span> <span>label</span><span>,</span> <span>center</span> <span>=</span> <span>cv2</span><span>.</span><span>kmeans</span><span>(</span><span>Z</span><span>,</span> <span>K</span><span>,</span> <span>None</span><span>,</span> <span>criteria</span><span>,</span> <span>1</span><span>,</span> <span>cv2</span><span>.</span><span>KMEANS_RANDOM_CENTERS</span><span>)</span><span>criteria</span> <span>=</span> <span>(</span><span>cv2</span><span>.</span><span>TERM_CRITERIA_EPS</span> <span>+</span> <span>cv2</span><span>.</span><span>TERM_CRITERIA_MAX_ITER</span><span>,</span> <span>10000</span><span>,</span> <span>0.0001</span><span>)</span> <span>compactness</span><span>,</span> <span>label</span><span>,</span> <span>center</span> <span>=</span> <span>cv2</span><span>.</span><span>kmeans</span><span>(</span><span>Z</span><span>,</span> <span>K</span><span>,</span> <span>None</span><span>,</span> <span>criteria</span><span>,</span> <span>1</span><span>,</span> <span>cv2</span><span>.</span><span>KMEANS_RANDOM_CENTERS</span><span>)</span>criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001) compactness, label, center = cv2.kmeans(Z, K, None, criteria, 1, cv2.KMEANS_RANDOM_CENTERS)
Enter fullscreen mode Exit fullscreen mode
then we convert to uint8
and apply to original image:
<span>center</span> <span>=</span> <span>np</span><span>.</span><span>uint8</span><span>(</span><span>center</span><span>)</span><span>res</span> <span>=</span> <span>center</span><span>[</span><span>label</span><span>.</span><span>flatten</span><span>()]</span><span>res2</span> <span>=</span> <span>res</span><span>.</span><span>reshape</span><span>((</span><span>image</span><span>.</span><span>shape</span><span>))</span><span>return</span> <span>res2</span><span>center</span> <span>=</span> <span>np</span><span>.</span><span>uint8</span><span>(</span><span>center</span><span>)</span> <span>res</span> <span>=</span> <span>center</span><span>[</span><span>label</span><span>.</span><span>flatten</span><span>()]</span> <span>res2</span> <span>=</span> <span>res</span><span>.</span><span>reshape</span><span>((</span><span>image</span><span>.</span><span>shape</span><span>))</span> <span>return</span> <span>res2</span>center = np.uint8(center) res = center[label.flatten()] res2 = res.reshape((image.shape)) return res2
Enter fullscreen mode Exit fullscreen mode
<span>if</span> <span>__name__</span> <span>==</span> <span>"</span><span>__main__</span><span>"</span><span>:</span><span>image</span> <span>=</span> <span>cv2</span><span>.</span><span>imread</span><span>(</span><span>filename</span><span>)</span><span>resized_image</span> <span>=</span> <span>resizeImage</span><span>(</span><span>image</span><span>)</span><span>coloured</span> <span>=</span> <span>ColorQuantization</span><span>(</span><span>resized_image</span><span>)</span><span>contoured</span> <span>=</span> <span>findCountours</span><span>(</span><span>coloured</span><span>)</span><span>final_image</span> <span>=</span> <span>contoured</span><span>save_q</span> <span>=</span> <span>input</span><span>(</span><span>"</span><span>Save the image? [y]/[n] </span><span>"</span><span>)</span><span>if</span> <span>save_q</span> <span>==</span> <span>"</span><span>y</span><span>"</span><span>:</span><span>cv2</span><span>.</span><span>imwrite</span><span>(</span><span>"</span><span>cartoonized_</span><span>"</span><span>+</span> <span>filename</span><span>,</span> <span>final_image</span><span>)</span><span>print</span><span>(</span><span>"</span><span>Image saved!</span><span>"</span><span>)</span><span>if</span> <span>__name__</span> <span>==</span> <span>"</span><span>__main__</span><span>"</span><span>:</span> <span>image</span> <span>=</span> <span>cv2</span><span>.</span><span>imread</span><span>(</span><span>filename</span><span>)</span> <span>resized_image</span> <span>=</span> <span>resizeImage</span><span>(</span><span>image</span><span>)</span> <span>coloured</span> <span>=</span> <span>ColorQuantization</span><span>(</span><span>resized_image</span><span>)</span> <span>contoured</span> <span>=</span> <span>findCountours</span><span>(</span><span>coloured</span><span>)</span> <span>final_image</span> <span>=</span> <span>contoured</span> <span>save_q</span> <span>=</span> <span>input</span><span>(</span><span>"</span><span>Save the image? [y]/[n] </span><span>"</span><span>)</span> <span>if</span> <span>save_q</span> <span>==</span> <span>"</span><span>y</span><span>"</span><span>:</span> <span>cv2</span><span>.</span><span>imwrite</span><span>(</span><span>"</span><span>cartoonized_</span><span>"</span><span>+</span> <span>filename</span><span>,</span> <span>final_image</span><span>)</span> <span>print</span><span>(</span><span>"</span><span>Image saved!</span><span>"</span><span>)</span>if __name__ == "__main__": image = cv2.imread(filename) resized_image = resizeImage(image) coloured = ColorQuantization(resized_image) contoured = findCountours(coloured) final_image = contoured save_q = input("Save the image? [y]/[n] ") if save_q == "y": cv2.imwrite("cartoonized_"+ filename, final_image) print("Image saved!")
Enter fullscreen mode Exit fullscreen mode
Thank you all.
暂无评论内容