Processing AST with ActiveSpecializer

Intro

ActiveSpecializer is a lightweight library that automagically optimizes your code for JVM and makes it significantly faster. Unlike traditional compiler optimization techniques, it relies on an alternative concept of using runtime information of classes instances, rewriting the bytecode in runtime. It transforms all class fields into static class fields, and de-virtualizes all virtual methods calls, replaces them with static method calls.

It is a really powerful tool, particularly when it comes to tree-like structures. Let’s take a look at a use case.
We will use ActiveSpecializer for transforming ASTs that we’ll receive after equation parsing. In the end of the article we’ll make some benchmarks to see how ActiveSpecializer coped with the problem. Let’s get started!

Parsing Equation to AST

This tutorial is based on the Parsec calculator tutorial. Yet, it has an important distinction. In the original tutorial Parsec parses expressions to double values:

Parser<Double> parser = new OperatorTable<Double>()
    .infixl(op("+", (l, r) -> l + r), 10)
    .infixl(op("-", (l, r) -> l - r), 10)
    .infixl(Parsers.or(term("*"), WHITESPACE_MUL).retn((l, r) -> l * r), 20)
    .infixl(op("/", (l, r) -> l / r), 20)
    .prefix(op("-", v -> -v), 30)
    .build(unit);

Enter fullscreen mode Exit fullscreen mode

Instead, we will parse the expressions to an AST:

private static final Parser<CalculatorExpression> EXPRESSION = new OperatorTable<CalculatorExpression>()
        .infixl(DELIMITERS.token("+").retn(Sum::new), 10)
        .infixl(DELIMITERS.token("-").retn(Sub::new), 10)
        .infixl(DELIMITERS.token("*").retn(Mul::new), 20)
        .infixl(DELIMITERS.token("/").retn(Div::new), 20)
        .infixl(DELIMITERS.token("%").retn(Mod::new), 20)
        .prefix(DELIMITERS.token("-").retn(Neg::new), 30)
        .infixr(DELIMITERS.token("^").retn(Pow::new), 40)
        .build(ATOM);

Enter fullscreen mode Exit fullscreen mode

For example, 2 - 4 * 6 will be parsed like this:

We will parse to an AST the following equation: ((2 + 2 * 2) * -x) + 5 + 1024 / (100 + 58) * 50 * 37 - 100 + 2 * x ^ 2 % 3.

ActiveSpecializer will transforms the received AST to a set of static final classes with baked-in values of the provided equation. During runtime JIT significantly optimizes and inlines these classes. As a result, we will receive an optimized reusable expression instance.

All you need to do to use ActiveSpecializer is:

public static final Parser<CalculatorExpression> PARSER = EXPRESSION.from(LEXER, IGNORED);

private static final Specializer SPECIALIZER = Specializer.create(Thread.currentThread().getContextClassLoader());

public static void main(String[] args) {
    double x = -1;

    CalculatorExpression expression = PARSER.parse("((2 + 2 * 2) * -x) + 5 + 1024 / (100 + 58) * 50 * 37 - 100 + 2 * x ^ 2 % 3");
    CalculatorExpression specialized = SPECIALIZER.specialize(expression);
    System.out.println(specialized.evaluate(x));
}

Enter fullscreen mode Exit fullscreen mode

Benchmarks

It’s time for some benchmarks. We will process the aforementioned equation in three different ways and compare the performance:

String source = "((2 + 2 * 2) * -x) + 5 + 1024 / (100 + 58) * 50 * 37 - 100 + 2 * x ^ 2 % 3";

manual = x -> ((2.0 + 2.0 * 2.0) * -x) + 5.0 + 1024.0 / (100.0 + 58.0) * 50.0 * 37.0 - 100.0 + 2.0 * (Math.pow(x, 2.0)) % 3.0;
ast = SpecializerCalculatorExample.PARSER.parse(source);
specialized = SPECIALIZER.specialize(ast);

Enter fullscreen mode Exit fullscreen mode

  • manually enter the equation
  • parse the equation to an AST and evaluate it without specialization
  • parse the equation to an AST and evaluate it with specialization

We used JMH in AvarageTime mode as a benchmark tool. All the results are represented as nanoseconds per operation.

Benchmark                        Mode  Cnt    Score   Error  Units
CalculatorBenchmark.ast          avgt   10  828.924 ± 8.369  ns/op
CalculatorBenchmark.manual       avgt   10  115.985 ± 1.009  ns/op
CalculatorBenchmark.specialized  avgt   10  117.635 ± 1.500  ns/op

Enter fullscreen mode Exit fullscreen mode

As you can see, specialized AST was processed just as fast as a a manually typed equation, while non-specialized AST was processed 8 times slower. ActiveSpecializer proved its substantial efficiency!

原文链接:Processing AST with ActiveSpecializer

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容