As a web developer and a beginner enthusiast about applying data-science concepts to finance, I was searching for a way a show data with Django. I notice that there are not enough resources about so I decided to share how you can do it.
In this post, We will build a web app with Django to visualize with Bokeh the market data about EUR/USD.
I assume that you understand Python programming language and Django.
You’ll also need an API key from AlphaVantage. They provide free Real-Time data about stock, forex and crypto markets.
Step 1: Set up the environment
We need to create an isolated Python environment. For this tutorial, I will use virtualenv
.
<span>mkdir </span>RealFx<span>cd </span>RealFxvirtualenv <span>--python</span><span>=</span>/usr/bin/python3.8 <span>env source env</span>/bin/activate<span>mkdir </span>RealFx <span>cd </span>RealFx virtualenv <span>--python</span><span>=</span>/usr/bin/python3.8 <span>env source env</span>/bin/activatemkdir RealFx cd RealFx virtualenv --python=/usr/bin/python3.8 env source env/bin/activate
Enter fullscreen mode Exit fullscreen mode
Now, we’ll install the packages and create the Django app.
pip <span>install </span>django bokeh pandasdjango-admin startproject RealFx <span>.</span>django-admin startapp mysitepip <span>install </span>django bokeh pandas django-admin startproject RealFx <span>.</span> django-admin startapp mysitepip install django bokeh pandas django-admin startproject RealFx . django-admin startapp mysite
Enter fullscreen mode Exit fullscreen mode
Don’t forget to add the app to your project settings.
<span>#RealFx/settings.py </span><span># Application definition </span><span>INSTALLED_APPS</span> <span>=</span> <span>[</span><span>'</span><span>django.contrib.admin</span><span>'</span><span>,</span><span>'</span><span>django.contrib.auth</span><span>'</span><span>,</span><span>'</span><span>django.contrib.contenttypes</span><span>'</span><span>,</span><span>'</span><span>django.contrib.sessions</span><span>'</span><span>,</span><span>'</span><span>django.contrib.messages</span><span>'</span><span>,</span><span>'</span><span>django.contrib.staticfiles</span><span>'</span><span>,</span><span>#others app </span> <span>'</span><span>mysite</span><span>'</span><span>,</span><span>]</span><span>#RealFx/settings.py </span> <span># Application definition </span> <span>INSTALLED_APPS</span> <span>=</span> <span>[</span> <span>'</span><span>django.contrib.admin</span><span>'</span><span>,</span> <span>'</span><span>django.contrib.auth</span><span>'</span><span>,</span> <span>'</span><span>django.contrib.contenttypes</span><span>'</span><span>,</span> <span>'</span><span>django.contrib.sessions</span><span>'</span><span>,</span> <span>'</span><span>django.contrib.messages</span><span>'</span><span>,</span> <span>'</span><span>django.contrib.staticfiles</span><span>'</span><span>,</span> <span>#others app </span> <span>'</span><span>mysite</span><span>'</span><span>,</span> <span>]</span>#RealFx/settings.py # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #others app 'mysite', ]
Enter fullscreen mode Exit fullscreen mode
Start the server.
python manage.py runserverpython manage.py runserverpython manage.py runserver
Enter fullscreen mode Exit fullscreen mode
Step 2 : Utilities functions
To visualize data with Django & Bokeh, we first need to make an API call to AlphaVantage API. Then, we are going to convert the JSON response into dataframe pandas format that we’ll use with Bokeh in your view.
As you see, it’s already a lot of things and one function can’t handle that.
So in mysite
app folder, create a file utils.py
. Let’s add the first function.
<span>#mysite/utils.py </span><span>import</span> <span>requests</span><span>import</span> <span>pandas</span> <span>as</span> <span>pd</span><span>def</span> <span>get_data</span><span>(</span><span>from_symbol</span><span>,</span> <span>to_symbol</span><span>,</span> <span>API_KEY</span><span>):</span><span>r</span> <span>=</span> <span>requests</span><span>.</span><span>get</span><span>(</span><span>'</span><span>https://www.alphavantage.co/query?function=FX_DAILY&from_symbol=</span><span>'</span> <span>+</span> <span>from_symbol</span> <span>+</span> <span>'</span><span>&to_symbol=</span><span>'</span> <span>+</span> <span>to_symbol</span> <span>+</span> <span>'</span><span>&apikey=</span><span>'</span> <span>+</span> <span>API_KEY</span><span>)</span><span>dataIntraday</span> <span>=</span> <span>r</span><span>.</span><span>json</span><span>()</span><span>return</span> <span>dataIntraday</span><span>[</span><span>'</span><span>Time Series FX (Daily)</span><span>'</span><span>]</span><span>#mysite/utils.py </span><span>import</span> <span>requests</span> <span>import</span> <span>pandas</span> <span>as</span> <span>pd</span> <span>def</span> <span>get_data</span><span>(</span><span>from_symbol</span><span>,</span> <span>to_symbol</span><span>,</span> <span>API_KEY</span><span>):</span> <span>r</span> <span>=</span> <span>requests</span><span>.</span><span>get</span><span>(</span><span>'</span><span>https://www.alphavantage.co/query?function=FX_DAILY&from_symbol=</span><span>'</span> <span>+</span> <span>from_symbol</span> <span>+</span> <span>'</span><span>&to_symbol=</span><span>'</span> <span>+</span> <span>to_symbol</span> <span>+</span> <span>'</span><span>&apikey=</span><span>'</span> <span>+</span> <span>API_KEY</span><span>)</span> <span>dataIntraday</span> <span>=</span> <span>r</span><span>.</span><span>json</span><span>()</span> <span>return</span> <span>dataIntraday</span><span>[</span><span>'</span><span>Time Series FX (Daily)</span><span>'</span><span>]</span>#mysite/utils.py import requests import pandas as pd def get_data(from_symbol, to_symbol, API_KEY): r = requests.get('https://www.alphavantage.co/query?function=FX_DAILY&from_symbol=' + from_symbol + '&to_symbol=' + to_symbol + '&apikey=' + API_KEY) dataIntraday = r.json() return dataIntraday['Time Series FX (Daily)']
Enter fullscreen mode Exit fullscreen mode
The second function will use pandas to convert the dictionary returned (dataIntraday[‘Time Series FX (Daily)’]) of get_data()
in dataframe pandas format.
<span>#mysite/utils.py </span><span>def</span> <span>convert_to_df</span><span>(</span><span>data</span><span>):</span><span>"""</span><span>Convert the result JSON in pandas dataframe</span><span>"""</span><span>df</span> <span>=</span> <span>pd</span><span>.</span><span>DataFrame</span><span>.</span><span>from_dict</span><span>(</span><span>data</span><span>,</span> <span>orient</span><span>=</span><span>'</span><span>index</span><span>'</span><span>)</span><span>df</span> <span>=</span> <span>df</span><span>.</span><span>reset_index</span><span>()</span><span>#Rename columns </span><span>df</span> <span>=</span> <span>df</span><span>.</span><span>rename</span><span>(</span><span>index</span><span>=</span><span>str</span><span>,</span> <span>columns</span><span>=</span><span>{</span><span>"</span><span>index</span><span>"</span><span>:</span> <span>"</span><span>date</span><span>"</span><span>,</span> <span>"</span><span>1. open</span><span>"</span><span>:</span> <span>"</span><span>open</span><span>"</span><span>,</span><span>"</span><span>2. high</span><span>"</span><span>:</span> <span>"</span><span>high</span><span>"</span><span>,</span> <span>"</span><span>3. low</span><span>"</span><span>:</span> <span>"</span><span>low</span><span>"</span><span>,</span> <span>"</span><span>4. close</span><span>"</span><span>:</span> <span>"</span><span>close</span><span>"</span><span>})</span><span>#Change to datetime </span><span>df</span><span>[</span><span>'</span><span>date</span><span>'</span><span>]</span> <span>=</span> <span>pd</span><span>.</span><span>to_datetime</span><span>(</span><span>df</span><span>[</span><span>'</span><span>date</span><span>'</span><span>])</span><span>#Sort data according to date </span><span>df</span> <span>=</span> <span>df</span><span>.</span><span>sort_values</span><span>(</span><span>by</span><span>=</span><span>[</span><span>'</span><span>date</span><span>'</span><span>])</span><span>#Change the datatype </span><span>df</span><span>.</span><span>open</span> <span>=</span> <span>df</span><span>.</span><span>open</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span><span>df</span><span>.</span><span>close</span> <span>=</span> <span>df</span><span>.</span><span>close</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span><span>df</span><span>.</span><span>high</span> <span>=</span> <span>df</span><span>.</span><span>high</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span><span>df</span><span>.</span><span>low</span> <span>=</span> <span>df</span><span>.</span><span>low</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span><span>#Checks </span> <span>df</span><span>.</span><span>head</span><span>()</span><span>df</span><span>.</span><span>info</span><span>()</span><span>return</span> <span>df</span><span>#mysite/utils.py </span><span>def</span> <span>convert_to_df</span><span>(</span><span>data</span><span>):</span> <span>"""</span><span>Convert the result JSON in pandas dataframe</span><span>"""</span> <span>df</span> <span>=</span> <span>pd</span><span>.</span><span>DataFrame</span><span>.</span><span>from_dict</span><span>(</span><span>data</span><span>,</span> <span>orient</span><span>=</span><span>'</span><span>index</span><span>'</span><span>)</span> <span>df</span> <span>=</span> <span>df</span><span>.</span><span>reset_index</span><span>()</span> <span>#Rename columns </span> <span>df</span> <span>=</span> <span>df</span><span>.</span><span>rename</span><span>(</span><span>index</span><span>=</span><span>str</span><span>,</span> <span>columns</span><span>=</span><span>{</span><span>"</span><span>index</span><span>"</span><span>:</span> <span>"</span><span>date</span><span>"</span><span>,</span> <span>"</span><span>1. open</span><span>"</span><span>:</span> <span>"</span><span>open</span><span>"</span><span>,</span> <span>"</span><span>2. high</span><span>"</span><span>:</span> <span>"</span><span>high</span><span>"</span><span>,</span> <span>"</span><span>3. low</span><span>"</span><span>:</span> <span>"</span><span>low</span><span>"</span><span>,</span> <span>"</span><span>4. close</span><span>"</span><span>:</span> <span>"</span><span>close</span><span>"</span><span>})</span> <span>#Change to datetime </span> <span>df</span><span>[</span><span>'</span><span>date</span><span>'</span><span>]</span> <span>=</span> <span>pd</span><span>.</span><span>to_datetime</span><span>(</span><span>df</span><span>[</span><span>'</span><span>date</span><span>'</span><span>])</span> <span>#Sort data according to date </span> <span>df</span> <span>=</span> <span>df</span><span>.</span><span>sort_values</span><span>(</span><span>by</span><span>=</span><span>[</span><span>'</span><span>date</span><span>'</span><span>])</span> <span>#Change the datatype </span> <span>df</span><span>.</span><span>open</span> <span>=</span> <span>df</span><span>.</span><span>open</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span> <span>df</span><span>.</span><span>close</span> <span>=</span> <span>df</span><span>.</span><span>close</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span> <span>df</span><span>.</span><span>high</span> <span>=</span> <span>df</span><span>.</span><span>high</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span> <span>df</span><span>.</span><span>low</span> <span>=</span> <span>df</span><span>.</span><span>low</span><span>.</span><span>astype</span><span>(</span><span>float</span><span>)</span> <span>#Checks </span> <span>df</span><span>.</span><span>head</span><span>()</span> <span>df</span><span>.</span><span>info</span><span>()</span> <span>return</span> <span>df</span>#mysite/utils.py def convert_to_df(data): """Convert the result JSON in pandas dataframe""" df = pd.DataFrame.from_dict(data, orient='index') df = df.reset_index() #Rename columns df = df.rename(index=str, columns={"index": "date", "1. open": "open", "2. high": "high", "3. low": "low", "4. close": "close"}) #Change to datetime df['date'] = pd.to_datetime(df['date']) #Sort data according to date df = df.sort_values(by=['date']) #Change the datatype df.open = df.open.astype(float) df.close = df.close.astype(float) df.high = df.high.astype(float) df.low = df.low.astype(float) #Checks df.head() df.info() return df
Enter fullscreen mode Exit fullscreen mode
Now we can work on the view.
Step 3: Setting up the View
In view of the application, we can now use the power of Bokeh. The chart will be visualized as Japanese candlesticks.
<span>from</span> <span>django.shortcuts</span> <span>import</span> <span>render</span><span>from</span> <span>bokeh.plotting</span> <span>import</span> <span>figure</span><span>,</span> <span>output_file</span><span>,</span> <span>show</span><span>from</span> <span>bokeh.embed</span> <span>import</span> <span>components</span><span>import</span> <span>pandas</span> <span>as</span> <span>pd</span><span>from</span> <span>math</span> <span>import</span> <span>pi</span><span>import</span> <span>datetime</span><span>from</span> <span>.utils</span> <span>import</span> <span>get_data</span><span>,</span> <span>convert_to_df</span><span>def</span> <span>homepage</span><span>(</span><span>request</span><span>):</span><span>#We use get_data method from utils </span><span>result</span> <span>=</span> <span>get_data</span><span>(</span><span>'</span><span>EUR</span><span>'</span><span>,</span><span>'</span><span>USD</span><span>'</span><span>,</span> <span>'</span><span>You_own_api_key</span><span>'</span><span>)</span> <span>#Add your own APIKEY </span><span>source</span> <span>=</span> <span>convert_to_df</span><span>(</span><span>result</span><span>)</span><span># These lines are there to color </span> <span># the red and green bars for down and up days </span><span>increasing</span> <span>=</span> <span>source</span><span>.</span><span>close</span> <span>></span> <span>source</span><span>.</span><span>open</span><span>decreasing</span> <span>=</span> <span>source</span><span>.</span><span>open</span> <span>></span> <span>source</span><span>.</span><span>close</span><span>w</span> <span>=</span> <span>12</span> <span>*</span> <span>60</span> <span>*</span> <span>60</span> <span>*</span> <span>1000</span><span>from</span> <span>django.shortcuts</span> <span>import</span> <span>render</span> <span>from</span> <span>bokeh.plotting</span> <span>import</span> <span>figure</span><span>,</span> <span>output_file</span><span>,</span> <span>show</span> <span>from</span> <span>bokeh.embed</span> <span>import</span> <span>components</span> <span>import</span> <span>pandas</span> <span>as</span> <span>pd</span> <span>from</span> <span>math</span> <span>import</span> <span>pi</span> <span>import</span> <span>datetime</span> <span>from</span> <span>.utils</span> <span>import</span> <span>get_data</span><span>,</span> <span>convert_to_df</span> <span>def</span> <span>homepage</span><span>(</span><span>request</span><span>):</span> <span>#We use get_data method from utils </span> <span>result</span> <span>=</span> <span>get_data</span><span>(</span><span>'</span><span>EUR</span><span>'</span><span>,</span><span>'</span><span>USD</span><span>'</span><span>,</span> <span>'</span><span>You_own_api_key</span><span>'</span><span>)</span> <span>#Add your own APIKEY </span> <span>source</span> <span>=</span> <span>convert_to_df</span><span>(</span><span>result</span><span>)</span> <span># These lines are there to color </span> <span># the red and green bars for down and up days </span> <span>increasing</span> <span>=</span> <span>source</span><span>.</span><span>close</span> <span>></span> <span>source</span><span>.</span><span>open</span> <span>decreasing</span> <span>=</span> <span>source</span><span>.</span><span>open</span> <span>></span> <span>source</span><span>.</span><span>close</span> <span>w</span> <span>=</span> <span>12</span> <span>*</span> <span>60</span> <span>*</span> <span>60</span> <span>*</span> <span>1000</span>from django.shortcuts import render from bokeh.plotting import figure, output_file, show from bokeh.embed import components import pandas as pd from math import pi import datetime from .utils import get_data, convert_to_df def homepage(request): #We use get_data method from utils result = get_data('EUR','USD', 'You_own_api_key') #Add your own APIKEY source = convert_to_df(result) # These lines are there to color # the red and green bars for down and up days increasing = source.close > source.open decreasing = source.open > source.close w = 12 * 60 * 60 * 1000
Enter fullscreen mode Exit fullscreen mode
First, we use the methods of our utils.py
file. We then convert the result into dataframe. The last lines are important for coloring and as we want to visualize in half-day.
<span>TOOLS</span> <span>=</span> <span>"</span><span>pan, wheel_zoom, box_zoom, reset, save</span><span>"</span><span>title</span> <span>=</span> <span>'</span><span>EUR to USD chart</span><span>'</span><span>p</span> <span>=</span> <span>figure</span><span>(</span><span>x_axis_type</span><span>=</span><span>"</span><span>datetime</span><span>"</span><span>,</span> <span>tools</span><span>=</span><span>TOOLS</span><span>,</span> <span>plot_width</span><span>=</span><span>700</span><span>,</span> <span>plot_height</span><span>=</span><span>500</span><span>,</span> <span>title</span> <span>=</span> <span>title</span><span>)</span><span>p</span><span>.</span><span>xaxis</span><span>.</span><span>major_label_orientation</span> <span>=</span> <span>pi</span> <span>/</span> <span>4</span><span>p</span><span>.</span><span>grid</span><span>.</span><span>grid_line_alpha</span> <span>=</span> <span>0.3</span><span>p</span><span>.</span><span>segment</span><span>(</span><span>source</span><span>.</span><span>date</span><span>,</span> <span>source</span><span>.</span><span>high</span><span>,</span> <span>source</span><span>.</span><span>date</span><span>,</span> <span>source</span><span>.</span><span>low</span><span>,</span> <span>color</span><span>=</span><span>"</span><span>black</span><span>"</span><span>)</span><span>TOOLS</span> <span>=</span> <span>"</span><span>pan, wheel_zoom, box_zoom, reset, save</span><span>"</span> <span>title</span> <span>=</span> <span>'</span><span>EUR to USD chart</span><span>'</span> <span>p</span> <span>=</span> <span>figure</span><span>(</span><span>x_axis_type</span><span>=</span><span>"</span><span>datetime</span><span>"</span><span>,</span> <span>tools</span><span>=</span><span>TOOLS</span><span>,</span> <span>plot_width</span><span>=</span><span>700</span><span>,</span> <span>plot_height</span><span>=</span><span>500</span><span>,</span> <span>title</span> <span>=</span> <span>title</span><span>)</span> <span>p</span><span>.</span><span>xaxis</span><span>.</span><span>major_label_orientation</span> <span>=</span> <span>pi</span> <span>/</span> <span>4</span> <span>p</span><span>.</span><span>grid</span><span>.</span><span>grid_line_alpha</span> <span>=</span> <span>0.3</span> <span>p</span><span>.</span><span>segment</span><span>(</span><span>source</span><span>.</span><span>date</span><span>,</span> <span>source</span><span>.</span><span>high</span><span>,</span> <span>source</span><span>.</span><span>date</span><span>,</span> <span>source</span><span>.</span><span>low</span><span>,</span> <span>color</span><span>=</span><span>"</span><span>black</span><span>"</span><span>)</span>TOOLS = "pan, wheel_zoom, box_zoom, reset, save" title = 'EUR to USD chart' p = figure(x_axis_type="datetime", tools=TOOLS, plot_width=700, plot_height=500, title = title) p.xaxis.major_label_orientation = pi / 4 p.grid.grid_line_alpha = 0.3 p.segment(source.date, source.high, source.date, source.low, color="black")
Enter fullscreen mode Exit fullscreen mode
As we are dealing with time-series data, it’s desirable to have an axis that can display labels that’s are appropriate to different dates and time scales.
<span>p</span><span>.</span><span>vbar</span><span>(</span><span>source</span><span>.</span><span>date</span><span>[</span><span>increasing</span><span>],</span> <span>w</span><span>,</span> <span>source</span><span>.</span><span>open</span><span>[</span><span>increasing</span><span>],</span> <span>source</span><span>.</span><span>close</span><span>[</span><span>increasing</span><span>],</span><span>fill_color</span><span>=</span><span>"</span><span>#D5E1DD</span><span>"</span><span>,</span> <span>line_color</span><span>=</span><span>"</span><span>black</span><span>"</span><span>)</span><span>p</span><span>.</span><span>vbar</span><span>(</span><span>source</span><span>.</span><span>date</span><span>[</span><span>decreasing</span><span>],</span> <span>w</span><span>,</span> <span>source</span><span>.</span><span>open</span><span>[</span><span>decreasing</span><span>],</span> <span>source</span><span>.</span><span>close</span><span>[</span><span>decreasing</span><span>],</span><span>fill_color</span><span>=</span><span>"</span><span>#F2583E</span><span>"</span><span>,</span> <span>line_color</span><span>=</span><span>"</span><span>black</span><span>"</span><span>)</span><span>script</span><span>,</span> <span>div</span> <span>=</span> <span>components</span><span>(</span><span>p</span><span>)</span><span>return</span> <span>render</span><span>(</span><span>request</span><span>,</span><span>'</span><span>pages/base.html</span><span>'</span><span>,{</span><span>'</span><span>script</span><span>'</span><span>:</span><span>script</span><span>,</span> <span>'</span><span>div</span><span>'</span><span>:</span><span>div</span> <span>})</span><span>p</span><span>.</span><span>vbar</span><span>(</span><span>source</span><span>.</span><span>date</span><span>[</span><span>increasing</span><span>],</span> <span>w</span><span>,</span> <span>source</span><span>.</span><span>open</span><span>[</span><span>increasing</span><span>],</span> <span>source</span><span>.</span><span>close</span><span>[</span><span>increasing</span><span>],</span> <span>fill_color</span><span>=</span><span>"</span><span>#D5E1DD</span><span>"</span><span>,</span> <span>line_color</span><span>=</span><span>"</span><span>black</span><span>"</span> <span>)</span> <span>p</span><span>.</span><span>vbar</span><span>(</span><span>source</span><span>.</span><span>date</span><span>[</span><span>decreasing</span><span>],</span> <span>w</span><span>,</span> <span>source</span><span>.</span><span>open</span><span>[</span><span>decreasing</span><span>],</span> <span>source</span><span>.</span><span>close</span><span>[</span><span>decreasing</span><span>],</span> <span>fill_color</span><span>=</span><span>"</span><span>#F2583E</span><span>"</span><span>,</span> <span>line_color</span><span>=</span><span>"</span><span>black</span><span>"</span> <span>)</span> <span>script</span><span>,</span> <span>div</span> <span>=</span> <span>components</span><span>(</span><span>p</span><span>)</span> <span>return</span> <span>render</span><span>(</span><span>request</span><span>,</span><span>'</span><span>pages/base.html</span><span>'</span><span>,{</span><span>'</span><span>script</span><span>'</span><span>:</span><span>script</span><span>,</span> <span>'</span><span>div</span><span>'</span><span>:</span><span>div</span> <span>})</span>p.vbar(source.date[increasing], w, source.open[increasing], source.close[increasing], fill_color="#D5E1DD", line_color="black" ) p.vbar(source.date[decreasing], w, source.open[decreasing], source.close[decreasing], fill_color="#F2583E", line_color="black" ) script, div = components(p) return render(request,'pages/base.html',{'script':script, 'div':div })
Enter fullscreen mode Exit fullscreen mode
Step 3: Show the data into the browser
Send data to HTML files in Django requires to store our templates files delicately.
In mysite
application folder, create a folder templates
. Then inside this folder, create another folder mysite
(same name as your app). Then create a folder named pages
and (We’re almost done ), create HTML file base.html
If you noticed in the view file, the function homepage
returns a dictionary of objects.
We need the HTML file to contain a div where the visualization will be displayed and the Bokeh dependencies in the file.
CSS files in the head, and JS files at the end of the code. For the sake of performance.
<span><html></span><span><head></span><span><meta</span> <span>http-equiv=</span><span>"Content-Type"</span> <span>content=</span><span>"text/html;charset=UTF-8"</span><span>></span><span><title></span>Financial Data<span></title></span><span><link</span> <span>rel=</span><span>"stylesheet"</span> <span>href=</span><span>"https://cdnjs.cloudflare.com/ajax/libs/bulma/0.4.0/css/bulma.css"</span> <span>/></span><span></head></span><span><body></span><span><nav</span> <span>class=</span><span>"navbar hero is-dark is-bold has-text-centered"</span> <span>role=</span><span>"navigation"</span> <span>aria-label=</span><span>"main navigation"</span><span>></span><span><div</span> <span>class=</span><span>"navbar-brand"</span><span>></span><span><a</span> <span>class=</span><span>"navbar-item"</span><span>></span><span><h1</span> <span>class=</span><span>"title has-text-weight-normal is-1 has-text-white"</span><span>></span>Django-Bokeh-AlphaVantage<span></h1></span><span></a></span><span></div></span><span></nav></span><span><section</span> <span>class=</span><span>"container"</span><span>></span><span><div</span> <span>class=</span><span>"columns"</span><span>></span><span><div</span> <span>class=</span><span>"column"</span><span>></span><span></div></span><span><div</span> <span>class=</span><span>"column is-6"</span><span>></span>{{ div | safe }}<span></div></span><span><div</span> <span>class=</span><span>"column"</span><span>></span><span></div></span><span></div></span><span></section></span><span><script </span><span>src=</span><span>"https://cdnjs.cloudflare.com/ajax/libs/bokeh/1.4.0/bokeh.min.js"</span><span>></script></span><span><script </span><span>src=</span><span>"https://cdnjs.cloudflare.com/ajax/libs/bokeh/1.4.0/bokeh-widgets.min.js"</span><span>></script></span>{{ script | safe }}<span></body></span><span></html></span><span><html></span> <span><head></span> <span><meta</span> <span>http-equiv=</span><span>"Content-Type"</span> <span>content=</span><span>"text/html;charset=UTF-8"</span><span>></span> <span><title></span>Financial Data<span></title></span> <span><link</span> <span>rel=</span><span>"stylesheet"</span> <span>href=</span><span>"https://cdnjs.cloudflare.com/ajax/libs/bulma/0.4.0/css/bulma.css"</span> <span>/></span> <span></head></span> <span><body></span> <span><nav</span> <span>class=</span><span>"navbar hero is-dark is-bold has-text-centered"</span> <span>role=</span><span>"navigation"</span> <span>aria-label=</span><span>"main navigation"</span><span>></span> <span><div</span> <span>class=</span><span>"navbar-brand"</span><span>></span> <span><a</span> <span>class=</span><span>"navbar-item"</span><span>></span> <span><h1</span> <span>class=</span><span>"title has-text-weight-normal is-1 has-text-white"</span><span>></span> Django-Bokeh-AlphaVantage <span></h1></span> <span></a></span> <span></div></span> <span></nav></span> <span><section</span> <span>class=</span><span>"container"</span><span>></span> <span><div</span> <span>class=</span><span>"columns"</span><span>></span> <span><div</span> <span>class=</span><span>"column"</span><span>></span> <span></div></span> <span><div</span> <span>class=</span><span>"column is-6"</span><span>></span> {{ div | safe }} <span></div></span> <span><div</span> <span>class=</span><span>"column"</span><span>></span> <span></div></span> <span></div></span> <span></section></span> <span><script </span><span>src=</span><span>"https://cdnjs.cloudflare.com/ajax/libs/bokeh/1.4.0/bokeh.min.js"</span><span>></script></span> <span><script </span><span>src=</span><span>"https://cdnjs.cloudflare.com/ajax/libs/bokeh/1.4.0/bokeh-widgets.min.js"</span><span>></script></span> {{ script | safe }} <span></body></span> <span></html></span><html> <head> <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> <title>Financial Data</title> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.4.0/css/bulma.css" /> </head> <body> <nav class="navbar hero is-dark is-bold has-text-centered" role="navigation" aria-label="main navigation"> <div class="navbar-brand"> <a class="navbar-item"> <h1 class="title has-text-weight-normal is-1 has-text-white"> Django-Bokeh-AlphaVantage </h1> </a> </div> </nav> <section class="container"> <div class="columns"> <div class="column"> </div> <div class="column is-6"> {{ div | safe }} </div> <div class="column"> </div> </div> </section> <script src="https://cdnjs.cloudflare.com/ajax/libs/bokeh/1.4.0/bokeh.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/bokeh/1.4.0/bokeh-widgets.min.js"></script> {{ script | safe }} </body> </html>
Enter fullscreen mode Exit fullscreen mode
Step 5: URLs to views and Final configuration
We must indicate the routes to the views of our application.
Create urls.py
in mysite
folder and add these lines.
<span>#mysite/urls.py </span><span>from</span> <span>django.urls</span> <span>import</span> <span>path</span><span>from</span> <span>.</span> <span>import</span> <span>views</span><span>urlpatterns</span> <span>=</span> <span>[</span><span>path</span><span>(</span><span>''</span><span>,</span> <span>views</span><span>.</span><span>homepage</span><span>,</span> <span>name</span><span>=</span><span>'</span><span>homepage</span><span>'</span><span>)</span><span>]</span><span>#mysite/urls.py </span><span>from</span> <span>django.urls</span> <span>import</span> <span>path</span> <span>from</span> <span>.</span> <span>import</span> <span>views</span> <span>urlpatterns</span> <span>=</span> <span>[</span> <span>path</span><span>(</span><span>''</span><span>,</span> <span>views</span><span>.</span><span>homepage</span><span>,</span> <span>name</span><span>=</span><span>'</span><span>homepage</span><span>'</span><span>)</span> <span>]</span>#mysite/urls.py from django.urls import path from . import views urlpatterns = [ path('', views.homepage, name='homepage') ]
Enter fullscreen mode Exit fullscreen mode
Because we separated the URLs file, we should notify it in the project urls file.
<span>#RealFx/urls </span><span>from</span> <span>django.contrib</span> <span>import</span> <span>admin</span><span>from</span> <span>django.urls</span> <span>import</span> <span>path</span><span>,</span> <span>include</span><span>urlpatterns</span> <span>=</span> <span>[</span><span>path</span><span>(</span><span>'</span><span>admin/</span><span>'</span><span>,</span> <span>admin</span><span>.</span><span>site</span><span>.</span><span>urls</span><span>),</span><span>#mysite url file </span> <span>path</span><span>(</span><span>''</span><span>,</span> <span>include</span><span>(</span><span>'</span><span>mysite.urls</span><span>'</span><span>)),</span><span>]</span><span>#RealFx/urls </span><span>from</span> <span>django.contrib</span> <span>import</span> <span>admin</span> <span>from</span> <span>django.urls</span> <span>import</span> <span>path</span><span>,</span> <span>include</span> <span>urlpatterns</span> <span>=</span> <span>[</span> <span>path</span><span>(</span><span>'</span><span>admin/</span><span>'</span><span>,</span> <span>admin</span><span>.</span><span>site</span><span>.</span><span>urls</span><span>),</span> <span>#mysite url file </span> <span>path</span><span>(</span><span>''</span><span>,</span> <span>include</span><span>(</span><span>'</span><span>mysite.urls</span><span>'</span><span>)),</span> <span>]</span>#RealFx/urls from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), #mysite url file path('', include('mysite.urls')), ]
Enter fullscreen mode Exit fullscreen mode
Now we’re done. Let’s see the data.
And Voilà.
Conclusion
In this post, I showed you how to visualize financial data with Django & Bokeh. Every article can be made better, so please leave your suggestions and contributions in the comments below. If you have questions about any of the steps, you are welcome in the comment section.
Check the Github repo.
原文链接:Visualizing Financial Market Data With Django, Bokeh & AlphaVantage API
暂无评论内容