Effective Java Review (90 Part Series)
1 Effective Java Tuesday! Let’s Consider Static Factory Methods
2 Effective Java Tuesday! The Builder Pattern!
… 86 more parts…
3 Effective Java Tuesday! Singletons!
4 Effective Java Tuesday! Utility Classes!
5 Effective Java Tuesday! Prefer Dependency Injection!
6 Effective Java Tuesday! Avoid Creating Unnecessary Objects!
7 Effective Java Tuesday! Don’t Leak Object References!
8 Effective Java Tuesday! Avoid Finalizers and Cleaners!
9 Effective Java Tuesday! Prefer try-with-resources
10 Effective Java Tuesday! Obey the `equals` contract
11 Effective Java Tuesday! Obey the `hashCode` contract
12 Effective Java Tuesday! Override `toString`
13 Effective Java Tuesday! Override `clone` judiciously
14 Effective Java Tuesday! Consider Implementing `Comparable`
15 Effective Java Tuesday! Minimize the Accessibility of Classes and Member
16 Effective Java Tuesday! In Public Classes, Use Accessors, Not Public Fields
17 Effective Java Tuesday! Minimize Mutability
18 Effective Java Tuesday! Favor Composition Over Inheritance
19 Effective Java Tuesday! Design and Document Classes for Inheritance or Else Prohibit It.
20 Effective Java Tuesday! Prefer Interfaces to Abstract Classes
21 Effective Java! Design Interfaces for Posterity
22 Effective Java! Use Interfaces Only to Define Types
23 Effective Java! Prefer Class Hierarchies to Tagged Classes
24 Effective Java! Favor Static Members Classes over Non-Static
25 Effective Java! Limit Source Files to a Single Top-Level Class
26 Effective Java! Don’t Use Raw Types
27 Effective Java! Eliminate Unchecked Warnings
28 Effective Java! Prefer Lists to Array
29 Effective Java! Favor Generic Types
30 Effective Java! Favor Generic Methods
31 Effective Java! Use Bounded Wildcards to Increase API Flexibility
32 Effective Java! Combine Generics and Varargs Judiciously
33 Effective Java! Consider Typesafe Heterogenous Containers
34 Effective Java! Use Enums Instead of int Constants
35 Effective Java! Use Instance Fields Instead of Ordinals
36 Effective Java! Use EnumSet Instead of Bit Fields
37 Effective Java! Use EnumMap instead of Ordinal Indexing
38 Effective Java! Emulate Extensible Enums With Interfaces.
39 Effective Java! Prefer Annotations to Naming Patterns
40 Effective Java! Consistently Use the Override Annotation
41 Effective Java! Use Marker Interfaces to Define Types
42 Effective Java! Prefer Lambdas to Anonymous Classes
43 Effective Java! Prefer Method References to Lambdas
44 Effective Java! Favor the Use of Standard Functional Interfaces
45 Effective Java! Use Stream Judiciously
46 Effective Java! Prefer Side-Effect-Free Functions in Streams
47 Effective Java! Prefer Collection To Stream as a Return Type
48 Effective Java! Use Caution When Making Streams Parallel
49 Effective Java! Check Parameters for Validity
50 Effective Java! Make Defensive Copies When Necessary
51 Effective Java! Design Method Signatures Carefully
52 Effective Java! Use Overloading Judiciously
53 Effective Java! Use Varargs Judiciously
54 Effective Java! Return Empty Collections or Arrays, Not Nulls
55 Effective Java! Return Optionals Judiciously
56 Effective Java: Write Doc Comments For All Exposed APIs
57 Effective Java: Minimize The Scope of Local Variables
58 Effective Java: Prefer for-each loops to traditional for loops
59 Effective Java: Know and Use the Libraries
60 Effective Java: Avoid Float and Double If Exact Answers Are Required
61 Effective Java: Prefer Primitive Types to Boxed Types
62 Effective Java: Avoid Strings When Other Types Are More Appropriate
63 Effective Java: Beware the Performance of String Concatenation
64 Effective Java: Refer to Objects By Their Interfaces
65 Effective Java: Prefer Interfaces To Reflection
66 Effective Java: Use Native Methods Judiciously
67 Effective Java: Optimize Judiciously
68 Effective Java: Adhere to Generally Accepted Naming Conventions
69 Effective Java: Use Exceptions for Only Exceptional Circumstances
70 Effective Java: Use Checked Exceptions for Recoverable Conditions
71 Effective Java: Avoid Unnecessary Use of Checked Exceptions
72 Effective Java: Favor The Use of Standard Exceptions
73 Effective Java: Throw Exceptions Appropriate To The Abstraction
74 Effective Java: Document All Exceptions Thrown By Each Method
75 Effective Java: Include Failure-Capture Information in Detail Messages
76 Effective Java: Strive for Failure Atomicity
77 Effective Java: Don’t Ignore Exceptions
78 Effective Java: Synchronize Access to Shared Mutable Data
79 Effective Java: Avoid Excessive Synchronization
80 Effective Java: Prefer Executors, Tasks, and Streams to Threads
81 Effective Java: Prefer Concurrency Utilities Over wait and notify
82 Effective Java: Document Thread Safety
83 Effective Java: Use Lazy Initialization Judiciously
84 Effective Java: Don’t Depend on the Thread Scheduler
85 Effective Java: Prefer Alternatives To Java Serialization
86 Effective Java: Implement Serializable With Great Caution
87 Effective Java: Consider Using a Custom Serialized Form
88 Effective Java: Write readObject Methods Defensively
89 Effective Java: For Instance Control, Prefer Enum types to readResolve
90 Effective Java: Consider Serialization Proxies Instead of Serialized Instances
Today our topic is about memory leaks inside of Java. Wait!? Memory leaks in Java? That’s not possible right? Isn’t that one of the promises of Java, to have managed memory? When I started learning to code I started with C++ like man people. Let me tell you something, if you don’t manage your memory well in C++ you will likely blow your foot off. But anyway we were talking about memory leaks in Java. I think the best way to show this is with an example and I think the example from the book is a great example of it:
public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_SIZE = 16;
public Stack() {
elements = new Object[DEFAULT_INITIAL_SIZE];
}
public void push(Object element) {
ensureCapacity();
elements[size++] = element;
}
public Object pop() {
if (size == 0) {
throw new EmptyStackException();
}
return elements[--size];
}
private void ensureCapacity() {
if(elements.length = size) {
elements = Arrays.copyOf(elements, 2 * size + 1);
}
}
}
Enter fullscreen mode Exit fullscreen mode
Looks like it would work right? I’ll let you in on a secret. This code does actually work fine but it does have a “memory leak”. Can you spot it? I for one definitely didn’t get it right off the bat. The problem lies in this line here from our pop
function.:
return elements[--size];
Enter fullscreen mode Exit fullscreen mode
So what is wrong with this line? What the code is conceptually doing is returning an object and removing it from the stack. What is actually happening is that the elements
array still has a reference to the object and won’t be able to be garbage collected until that element is overwritten. So if, for example, a bunch of objects were added to the stack and then popped off we would expect the elements to be garbage collected but they will not.
But is this actually a memory leak? Not in the normal meaning of the word. More correctly they could be titled “obsolete object references.” That being said the symptoms and problems it can cause are along the same lines. So how do we fix this issue. Well simply enough we null out the object before returning:
public Object pop() {
if (size == 0) {
throw new EmptyStackException();
}
Object poppedObject = elements[--size];
elements[size] = null;
return poppedObject;
}
Enter fullscreen mode Exit fullscreen mode
So am I saying that you should null out all objects after you are done with it? Please no. Having to null out objects is almost always the exception and not the rule. Java is indeed a language with managed memory and it will handle the clean up of our objects as they fall out of scope and lose all references to them. So in what cases do we need to account for the above issue and when do we not? It all comes down to if we are managing our own memory/objects or not. If you manage your memory you need to take it all the way and manage your memory, not just do it halfway. Above we are managing our memory ourselves as we have our array of elements that we are managing as storage.
What are some other places we see this. Caches is another example. We need to be aware of the lifecycle of our data in our caches when we use them as our cache can keep an object from being garbage collected even if nothing else in the system will ever request the object from the cache. One way to account for this is using Java’s WeakReference
class. We do need to be aware that when using this class it is simply a pointer to the object and is counting on an external system having a reference to the object to keep it from being garbage collected while it is still usable. Using WeakReferences and related classes are a more advanced topic and how to intelligently use it is beyond the scope of this blog article. A final location that developers can leave around obsolete objects is when using listeners and other callbacks. I remember this being of particular concern when working with Android in a previous life of mine. This can be accounted for in the same manner as above with the use of WeakReferences
The topic of discussion today is a little more niche without a doubt. You will likely not run into this everyday but this is one of the things to keep in mind as we develop our software. Memory leaks are extremely hard to debug and thus we should do all in our power to avoid them.
Effective Java Review (90 Part Series)
1 Effective Java Tuesday! Let’s Consider Static Factory Methods
2 Effective Java Tuesday! The Builder Pattern!
… 86 more parts…
3 Effective Java Tuesday! Singletons!
4 Effective Java Tuesday! Utility Classes!
5 Effective Java Tuesday! Prefer Dependency Injection!
6 Effective Java Tuesday! Avoid Creating Unnecessary Objects!
7 Effective Java Tuesday! Don’t Leak Object References!
8 Effective Java Tuesday! Avoid Finalizers and Cleaners!
9 Effective Java Tuesday! Prefer try-with-resources
10 Effective Java Tuesday! Obey the `equals` contract
11 Effective Java Tuesday! Obey the `hashCode` contract
12 Effective Java Tuesday! Override `toString`
13 Effective Java Tuesday! Override `clone` judiciously
14 Effective Java Tuesday! Consider Implementing `Comparable`
15 Effective Java Tuesday! Minimize the Accessibility of Classes and Member
16 Effective Java Tuesday! In Public Classes, Use Accessors, Not Public Fields
17 Effective Java Tuesday! Minimize Mutability
18 Effective Java Tuesday! Favor Composition Over Inheritance
19 Effective Java Tuesday! Design and Document Classes for Inheritance or Else Prohibit It.
20 Effective Java Tuesday! Prefer Interfaces to Abstract Classes
21 Effective Java! Design Interfaces for Posterity
22 Effective Java! Use Interfaces Only to Define Types
23 Effective Java! Prefer Class Hierarchies to Tagged Classes
24 Effective Java! Favor Static Members Classes over Non-Static
25 Effective Java! Limit Source Files to a Single Top-Level Class
26 Effective Java! Don’t Use Raw Types
27 Effective Java! Eliminate Unchecked Warnings
28 Effective Java! Prefer Lists to Array
29 Effective Java! Favor Generic Types
30 Effective Java! Favor Generic Methods
31 Effective Java! Use Bounded Wildcards to Increase API Flexibility
32 Effective Java! Combine Generics and Varargs Judiciously
33 Effective Java! Consider Typesafe Heterogenous Containers
34 Effective Java! Use Enums Instead of int Constants
35 Effective Java! Use Instance Fields Instead of Ordinals
36 Effective Java! Use EnumSet Instead of Bit Fields
37 Effective Java! Use EnumMap instead of Ordinal Indexing
38 Effective Java! Emulate Extensible Enums With Interfaces.
39 Effective Java! Prefer Annotations to Naming Patterns
40 Effective Java! Consistently Use the Override Annotation
41 Effective Java! Use Marker Interfaces to Define Types
42 Effective Java! Prefer Lambdas to Anonymous Classes
43 Effective Java! Prefer Method References to Lambdas
44 Effective Java! Favor the Use of Standard Functional Interfaces
45 Effective Java! Use Stream Judiciously
46 Effective Java! Prefer Side-Effect-Free Functions in Streams
47 Effective Java! Prefer Collection To Stream as a Return Type
48 Effective Java! Use Caution When Making Streams Parallel
49 Effective Java! Check Parameters for Validity
50 Effective Java! Make Defensive Copies When Necessary
51 Effective Java! Design Method Signatures Carefully
52 Effective Java! Use Overloading Judiciously
53 Effective Java! Use Varargs Judiciously
54 Effective Java! Return Empty Collections or Arrays, Not Nulls
55 Effective Java! Return Optionals Judiciously
56 Effective Java: Write Doc Comments For All Exposed APIs
57 Effective Java: Minimize The Scope of Local Variables
58 Effective Java: Prefer for-each loops to traditional for loops
59 Effective Java: Know and Use the Libraries
60 Effective Java: Avoid Float and Double If Exact Answers Are Required
61 Effective Java: Prefer Primitive Types to Boxed Types
62 Effective Java: Avoid Strings When Other Types Are More Appropriate
63 Effective Java: Beware the Performance of String Concatenation
64 Effective Java: Refer to Objects By Their Interfaces
65 Effective Java: Prefer Interfaces To Reflection
66 Effective Java: Use Native Methods Judiciously
67 Effective Java: Optimize Judiciously
68 Effective Java: Adhere to Generally Accepted Naming Conventions
69 Effective Java: Use Exceptions for Only Exceptional Circumstances
70 Effective Java: Use Checked Exceptions for Recoverable Conditions
71 Effective Java: Avoid Unnecessary Use of Checked Exceptions
72 Effective Java: Favor The Use of Standard Exceptions
73 Effective Java: Throw Exceptions Appropriate To The Abstraction
74 Effective Java: Document All Exceptions Thrown By Each Method
75 Effective Java: Include Failure-Capture Information in Detail Messages
76 Effective Java: Strive for Failure Atomicity
77 Effective Java: Don’t Ignore Exceptions
78 Effective Java: Synchronize Access to Shared Mutable Data
79 Effective Java: Avoid Excessive Synchronization
80 Effective Java: Prefer Executors, Tasks, and Streams to Threads
81 Effective Java: Prefer Concurrency Utilities Over wait and notify
82 Effective Java: Document Thread Safety
83 Effective Java: Use Lazy Initialization Judiciously
84 Effective Java: Don’t Depend on the Thread Scheduler
85 Effective Java: Prefer Alternatives To Java Serialization
86 Effective Java: Implement Serializable With Great Caution
87 Effective Java: Consider Using a Custom Serialized Form
88 Effective Java: Write readObject Methods Defensively
89 Effective Java: For Instance Control, Prefer Enum types to readResolve
90 Effective Java: Consider Serialization Proxies Instead of Serialized Instances
暂无评论内容