Hi Devz!
This is a post on using the ‘knowledge’ gained from part 1 of the Deep Learning with Python book to classify FASHION MNIST images which is dataset of 60,000 images.
This is really an extension of the MNIST Digit Recognizer for identification of different kind of wearables, coat, shirt, shoes etc.
As you can see from the heading, I didn’t use the deeper part of DL, which is convolutional neural networks and to be frank just brute forced several combinations until I got the best accuracy on test data.
I used a combination of the following and took the one which had the highest test accuracy:
- Multiple hidden layers
- Multiple unit combination in those hidden layers
- Multiple combination of units in the first layer
The best model was having 1 hidden layer with 128 units and 512 units in the outer layer and an accuracy of 89.04%.
this is not how it should be done though, since resources are limited in real world for working on real, hard ML problems!
Code
from keras import models
from keras import layers
from keras.datasets import fashion_mnist
import numpy as np
import matplotlib.pyplot as plt
from keras.utils import to_categorical, plot_model
import operator
(train_x, train_y), (test_x, test_y) = fashion_mnist.load_data()
def shape(arr):
x = np.reshape(arr, (len(arr), 784))
return x
#epochs e = 40
#prediction array eval_arr = {}
pred_arr = {}
#label summary label_list = {0: 'T-shirt/top', 1: 'Trouser', 2:'Pullover', 3:'Dress', 4:'Coat', 5:'Sandal', 6:'Shirt', 7:'Sneaker', 8:'Bag', 9:'Ankle boot'}
#path output_dir_model = r'C:\Users\karan.verma\.spyder-py3\deep-learning\models'
train_x_reshaped = shape(train_x).astype('float32')/255
train_y = to_categorical(train_y)
train_y = train_y.astype('float32')
test_x_reshaped = shape(test_x).astype('float32')/255
test_y = to_categorical(test_y)
test_y = test_y.astype('float32')
#take out validation data, 25% = 15,000 samples
partial_train_x = train_x_reshaped[:int(len(train_x_reshaped)*0.75)]
partial_train_y = train_y[:int(len(train_y)*0.75)]
val_x = train_x_reshaped[int(len(train_x_reshaped)*0.75):]
val_y = train_y[int(len(train_y)*0.75):]
# run model with several different parameters
#lyrs = [1, 2] #units_out = [512, 256, 128, 64, 32, 16] #units_in = [128, 64, 32, 16]
lyrs = [1]
units_out = [512]
units_in = [128]
#make model for lyr in lyrs:
for unit_out in units_out:
for unit_in in units_in:
print('Running model having %d hidden layers & %d units in each hidden layer and %d units in the outer layer' % (lyr, unit_in, unit_out))
model = models.Sequential()
model.add(layers.Dense(unit_out, activation='relu', input_shape=(784,)))
for i in range(lyr):
model.add(layers.Dense(unit_in, activation='relu'))
model.add(layers.Dense(10, activation = 'sigmoid'))
#compile model model.compile(optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics=['accuracy'])
#model fit
history = model.fit(partial_train_x,
partial_train_y,
epochs = e,
batch_size=512,
validation_data=(val_x, val_y),
verbose = 1)
acc_list = history.history
fig, ax = plt.subplots(2,1, figsize=(20, 10))
plt.subplot(211)
plt.plot(np.arange(1, e+1), acc_list['loss'], label='Training Loss')
plt.plot(np.arange(1, e+1), acc_list['val_loss'], label='Validation Loss')
plt.title('Loss Graph')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.subplot(212)
plt.plot(np.arange(1, e+1), acc_list['acc'], label='Training Acc')
plt.plot(np.arange(1, e+1), acc_list['val_acc'], label='Validation Acc')
plt.title('Accuracy Graph')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
#plt.tight_layout() fig.savefig('{}/Model having %d hidden layers & %d units in each hidden layer and %d units in the outer layer.png'.format(output_dir_model) % (lyr, unit_in, unit_out))
plt.clf()
eval_arr['Model having %d hidden layers & %d units in each hidden layer and %d units in the outer layer' % (lyr, unit_in, unit_out)] = model.evaluate(test_x_reshaped, test_y)
pred_arr['Model having %d hidden layers & %d units in each hidden layer and %d units in the outer layer' % (lyr, unit_in, unit_out)]= np.argmax(model.predict(test_x_reshaped), axis=1)
#get best model from eval_arr best_model = {}
k = ''
for key, val in eval_arr.items():
best_model[key] = val[1]
print('The best model is: {}'.format(max(best_model.items(), key=operator.itemgetter(1))))
#Building Prediction Pipeline #('Model having 1 hidden layers & 128 units in each hidden layer and 512 units in the outer layer',0.8953) but it varies
prediction = model.predict(test_x_reshaped)
print('Random samples from the test data: ')
fig, ax = plt.subplots(2, 3, figsize=(20, 10))
for i in range(1, 7):
c = np.random.choice(len(test_x_reshaped))
plt.subplot(2,3,i)
plt.imshow(test_x[c])
plt.title('Original {} & Predicted {}'.format(label_list[np.argmax(test_y[c])], label_list[np.argmax(prediction[c])]))
Enter fullscreen mode Exit fullscreen mode
Output Graph
Key Takeaways
- If you’re working on an ML problem, spend time understanding the graphs, otherwise it won’t make any sense
- Try problems outside of the book/tutorial etc.
- Implement stuff on your own without any guidance, it will make your brain hurt, but you’ll learn.
- Get stuck multiple times, google it, make it work and move forward to section 2 of the book!
Link to code.
**Edit: Always forget, but all questions, comments, critique are wholeheartedly welcome!
Enjoy your day!
暂无评论内容